Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 May;76(5):2606–2613. doi: 10.1016/S0006-3495(99)77413-8

A "release" protocol for isothermal titration calorimetry.

H H Heerklotz 1, H Binder 1, R M Epand 1
PMCID: PMC1300230  PMID: 10233075

Abstract

Isothermal titration calorimetry (ITC) has become a standard method for investigating the binding of ligands to receptor molecules or the partitioning of solutes between water and lipid vesicles. Accordingly, solutes are mixed with membranes (or ligands with receptors), and the subsequent heats of incorporation (or binding) are measured. In this paper we derive a general formula for modeling ITC titration heats in both binding and partitioning systems that allows for the modeling of the classic incorporation or binding protocols, as well as of new protocols assessing the release of solute from previously solute-loaded vesicles (or the dissociation of ligand/receptor complexes) upon dilution. One major advantage of a simultaneous application of the incorporation/binding and release protocols is that it allows for the determination of whether a ligand is able to access the vesicle interior within the time scale of the ITC experiment. This information cannot be obtained from a classical partitioning experiment, but it must be known to determine the partition coefficient (or binding constant and stochiometry) and the transfer enthalpy. The approach is presented using the partitioning of the nonionic detergent C12EO7 to palmitoyloleoylphosphatidylcholine vesicles. The release protocol could also be advantageous in the case of receptors that are more stable in the ligand-saturated rather than the ligand-depleted state.

Full Text

The Full Text of this article is available as a PDF (77.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beschiaschvili G., Seelig J. Peptide binding to lipid bilayers. Nonclassical hydrophobic effect and membrane-induced pK shifts. Biochemistry. 1992 Oct 20;31(41):10044–10053. doi: 10.1021/bi00156a026. [DOI] [PubMed] [Google Scholar]
  2. Epand R. M., Epand R. F. Calorimetric detection of curvature strain in phospholipid bilayers. Biophys J. 1994 May;66(5):1450–1456. doi: 10.1016/S0006-3495(94)80935-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heerklotz H., Binder H., Lantzsch G., Klose G. Membrane/water partition of oligo(ethylene oxide) dodecyl ethers and its relevance for solubilization. Biochim Biophys Acta. 1994 Dec 30;1196(2):114–122. doi: 10.1016/0005-2736(94)00222-3. [DOI] [PubMed] [Google Scholar]
  4. Huster D., Jin A. J., Arnold K., Gawrisch K. Water permeability of polyunsaturated lipid membranes measured by 17O NMR. Biophys J. 1997 Aug;73(2):855–864. doi: 10.1016/S0006-3495(97)78118-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jansen M., Blume A. A comparative study of diffusive and osmotic water permeation across bilayers composed of phospholipids with different head groups and fatty acyl chains. Biophys J. 1995 Mar;68(3):997–1008. doi: 10.1016/S0006-3495(95)80275-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Keller M., Kerth A., Blume A. Thermodynamics of interaction of octyl glucoside with phosphatidylcholine vesicles: partitioning and solubilization as studied by high sensitivity titration calorimetry. Biochim Biophys Acta. 1997 Jun 12;1326(2):178–192. doi: 10.1016/s0005-2736(97)00022-9. [DOI] [PubMed] [Google Scholar]
  7. Lasch J. Interaction of detergents with lipid vesicles. Biochim Biophys Acta. 1995 Jul 17;1241(2):269–292. doi: 10.1016/0304-4157(95)00010-o. [DOI] [PubMed] [Google Scholar]
  8. Lin L. N., Li J., Brandts J. F., Weis R. M. The serine receptor of bacterial chemotaxis exhibits half-site saturation for serine binding. Biochemistry. 1994 May 31;33(21):6564–6570. doi: 10.1021/bi00187a025. [DOI] [PubMed] [Google Scholar]
  9. Matsuzaki K., Yoneyama S., Miyajima K. Pore formation and translocation of melittin. Biophys J. 1997 Aug;73(2):831–838. doi: 10.1016/S0006-3495(97)78115-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Melikyan G. B., Deriy B. N., Ok D. C., Cohen F. S. Voltage-dependent translocation of R18 and DiI across lipid bilayers leads to fluorescence changes. Biophys J. 1996 Nov;71(5):2680–2691. doi: 10.1016/S0006-3495(96)79459-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Opatowski E., Kozlov M. M., Lichtenberg D. Partitioning of octyl glucoside between octyl glucoside/phosphatidylcholine mixed aggregates and aqueous media as studied by isothermal titration calorimetry. Biophys J. 1997 Sep;73(3):1448–1457. doi: 10.1016/S0006-3495(97)78177-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Paternostre M., Meyer O., Grabielle-Madelmont C., Lesieur S., Ghanam M., Ollivon M. Partition coefficient of a surfactant between aggregates and solution: application to the micelle-vesicle transition of egg phosphatidylcholine and octyl beta-D-glucopyranoside. Biophys J. 1995 Dec;69(6):2476–2488. doi: 10.1016/S0006-3495(95)80118-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rowe E. S., Zhang F., Leung T. W., Parr J. S., Guy P. T. Thermodynamics of membrane partitioning for a series of n-alcohols determined by titration calorimetry: role of hydrophobic effects. Biochemistry. 1998 Feb 24;37(8):2430–2440. doi: 10.1021/bi9721602. [DOI] [PubMed] [Google Scholar]
  14. Seelig J., Ganz P. Nonclassical hydrophobic effect in membrane binding equilibria. Biochemistry. 1991 Sep 24;30(38):9354–9359. doi: 10.1021/bi00102a031. [DOI] [PubMed] [Google Scholar]
  15. Seelig J. Titration calorimetry of lipid-peptide interactions. Biochim Biophys Acta. 1997 Mar 14;1331(1):103–116. doi: 10.1016/s0304-4157(97)00002-6. [DOI] [PubMed] [Google Scholar]
  16. Wenk M. R., Alt T., Seelig A., Seelig J. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer. Biophys J. 1997 Apr;72(4):1719–1731. doi: 10.1016/S0006-3495(97)78818-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wenk M. R., Seelig J. Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation. Biochemistry. 1998 Mar 17;37(11):3909–3916. doi: 10.1021/bi972615n. [DOI] [PubMed] [Google Scholar]
  18. White S. H., Wimley W. C., Ladokhin A. S., Hristova K. Protein folding in membranes: determining energetics of peptide-bilayer interactions. Methods Enzymol. 1998;295:62–87. doi: 10.1016/s0076-6879(98)95035-2. [DOI] [PubMed] [Google Scholar]
  19. Wiseman T., Williston S., Brandts J. F., Lin L. N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989 May 15;179(1):131–137. doi: 10.1016/0003-2697(89)90213-3. [DOI] [PubMed] [Google Scholar]
  20. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993 Aug 15;294(Pt 1):1–14. doi: 10.1042/bj2940001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zhang F., Rowe E. S. Titration calorimetric and differential scanning calorimetric studies of the interactions of n-butanol with several phases of dipalmitoylphosphatidylcholine. Biochemistry. 1992 Feb 25;31(7):2005–2011. doi: 10.1021/bi00122a016. [DOI] [PubMed] [Google Scholar]
  22. le Maire M., Møller J. V., Champeil P. Binding of a nonionic detergent to membranes: flip-flop rate and location on the bilayer. Biochemistry. 1987 Jul 28;26(15):4803–4810. doi: 10.1021/bi00389a030. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES