Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 May;76(5):2614–2624. doi: 10.1016/S0006-3495(99)77414-X

Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect.

R J Clarke 1, C Lüpfert 1
PMCID: PMC1300231  PMID: 10233076

Abstract

Anions and cations have long been recognized to be capable of modifying the functioning of various membrane-related physiological processes. Here, a fluorescent ratio method using the styrylpyridinium dyes, RH421 and di-8-ANEPPS, was applied to determine the effect of a range of anions and cations on the intramembrane dipole potential of dimyristoylphosphatidylcholine vesicles. It was found that certain anions cause a decrease in the dipole potential. This could be explained by binding within the membrane, in support of a hypothesis originally put forward by A. L. Hodgkin and P. Horowicz [1960, J. Physiol. (Lond.) 153:404-412.] The effectiveness of the anions in reducing the dipole potential was found to be ClO4- > SCN- > I- > NO3- > Br- > Cl- > F- > SO42-. This order could be modeled by a partitioning of ions between the membrane and the aqueous phase, which is controlled predominantly by the Gibbs free energy of hydration. Cations were also found to be capable of reducing the dipole potential, although much less efficiently than can anions. The effects of the cations was found to be trivalent > divalent > monovalent. The cation effects were attributed to binding to a specific polar site on the surface of the membrane. The results presented provide a molecular basis for the interpretation of the Hofmeister effect of lyotropic anions on ion transport proteins.

Full Text

The Full Text of this article is available as a PDF (115.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akutsu H., Seelig J. Interaction of metal ions with phosphatidylcholine bilayer membranes. Biochemistry. 1981 Dec 22;20(26):7366–7373. doi: 10.1021/bi00529a007. [DOI] [PubMed] [Google Scholar]
  2. BROCKMAN H. Dipole potential of lipid membranes. Chem Phys Lipids. 1994 Sep 6;73(1-2):57–79. doi: 10.1016/0009-3084(94)90174-0. [DOI] [PubMed] [Google Scholar]
  3. Baldwin R. L. How Hofmeister ion interactions affect protein stability. Biophys J. 1996 Oct;71(4):2056–2063. doi: 10.1016/S0006-3495(96)79404-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bashford C. L., Chance B., Smith J. C., Yoshida T. The behavior of oxonol dyes in phospholipid dispersions. Biophys J. 1979 Jan;25(1):63–85. doi: 10.1016/S0006-3495(79)85278-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bechinger B., Seelig J. Interaction of electric dipoles with phospholipid head groups. A 2H and 31P NMR study of phloretin and phloretin analogues in phosphatidylcholine membranes. Biochemistry. 1991 Apr 23;30(16):3923–3929. doi: 10.1021/bi00230a017. [DOI] [PubMed] [Google Scholar]
  6. Bedlack R. S., Jr, Wei M., Loew L. M. Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth. Neuron. 1992 Sep;9(3):393–403. doi: 10.1016/0896-6273(92)90178-g. [DOI] [PubMed] [Google Scholar]
  7. Cacace M. G., Landau E. M., Ramsden J. J. The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys. 1997 Aug;30(3):241–277. doi: 10.1017/s0033583597003363. [DOI] [PubMed] [Google Scholar]
  8. Casal H. L., Mantsch H. H., Hauser H. Infrared studies of fully hydrated saturated phosphatidylserine bilayers. Effect of Li+ and Ca2+. Biochemistry. 1987 Jul 14;26(14):4408–4416. doi: 10.1021/bi00388a033. [DOI] [PubMed] [Google Scholar]
  9. Casal H. L., Martin A., Mantsch H. H., Paltauf F., Hauser H. Infrared studies of fully hydrated unsaturated phosphatidylserine bilayers. Effect of Li+ and Ca2+. Biochemistry. 1987 Nov 17;26(23):7395–7401. doi: 10.1021/bi00397a030. [DOI] [PubMed] [Google Scholar]
  10. Cladera J., O'Shea P. Intramembrane molecular dipoles affect the membrane insertion and folding of a model amphiphilic peptide. Biophys J. 1998 May;74(5):2434–2442. doi: 10.1016/S0006-3495(98)77951-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clarke R. J. Effect of lipid structure on the dipole potential of phosphatidylcholine bilayers. Biochim Biophys Acta. 1997 Jul 25;1327(2):269–278. doi: 10.1016/s0005-2736(97)00075-8. [DOI] [PubMed] [Google Scholar]
  12. Clarke R. J., Kane D. J., Apell H. J., Roudna M., Bamberg E. Kinetics of Na(+)-dependent conformational changes of rabbit kidney Na+,K(+)-ATPase. Biophys J. 1998 Sep;75(3):1340–1353. doi: 10.1016/S0006-3495(98)74052-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clarke R. J., Kane D. J. Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects. Biochim Biophys Acta. 1997 Jan 31;1323(2):223–239. doi: 10.1016/s0005-2736(96)00188-5. [DOI] [PubMed] [Google Scholar]
  14. Clarke R. J., Zouni A., Holzwarth J. F. Voltage sensitivity of the fluorescent probe RH421 in a model membrane system. Biophys J. 1995 Apr;68(4):1406–1415. doi: 10.1016/S0006-3495(95)80313-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Collins K. D., Washabaugh M. W. The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys. 1985 Nov;18(4):323–422. doi: 10.1017/s0033583500005369. [DOI] [PubMed] [Google Scholar]
  16. Dani J. A., Sanchez J. A., Hille B. Lyotropic anions. Na channel gating and Ca electrode response. J Gen Physiol. 1983 Feb;81(2):255–281. doi: 10.1085/jgp.81.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Efimov I. R., Huang D. T., Rendt J. M., Salama G. Optical mapping of repolarization and refractoriness from intact hearts. Circulation. 1994 Sep;90(3):1469–1480. doi: 10.1161/01.cir.90.3.1469. [DOI] [PubMed] [Google Scholar]
  18. Fedosova N. U., Cornelius F., Klodos I. Fluorescent styryl dyes as probes for Na,K-ATPase reaction mechanism: significance of the charge of the hydrophilic moiety of RH dyes. Biochemistry. 1995 Dec 26;34(51):16806–16814. doi: 10.1021/bi00051a031. [DOI] [PubMed] [Google Scholar]
  19. Flewelling R. F., Hubbell W. L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys J. 1986 Feb;49(2):541–552. doi: 10.1016/S0006-3495(86)83664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fluhler E., Burnham V. G., Loew L. M. Spectra, membrane binding, and potentiometric responses of new charge shift probes. Biochemistry. 1985 Oct 8;24(21):5749–5755. doi: 10.1021/bi00342a010. [DOI] [PubMed] [Google Scholar]
  21. Franklin J. C., Cafiso D. S. Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. Biophys J. 1993 Jul;65(1):289–299. doi: 10.1016/S0006-3495(93)81051-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Grasdalen H., Göran Eriksson L. E., Westman J., Ehrenberg A. Surface potential effects on metal ion binding to phosphatidylcholine membranes 31P NMR study of lanthanide and calcium ion binding to egg-yolk lecithin vesicles. Biochim Biophys Acta. 1977 Sep 5;469(2):151–162. doi: 10.1016/0005-2736(77)90177-8. [DOI] [PubMed] [Google Scholar]
  24. Grinvald A., Fine A., Farber I. C., Hildesheim R. Fluorescence monitoring of electrical responses from small neurons and their processes. Biophys J. 1983 May;42(2):195–198. doi: 10.1016/S0006-3495(83)84386-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Grinvald A., Frostig R. D., Lieke E., Hildesheim R. Optical imaging of neuronal activity. Physiol Rev. 1988 Oct;68(4):1285–1366. doi: 10.1152/physrev.1988.68.4.1285. [DOI] [PubMed] [Google Scholar]
  26. Grinvald A., Hildesheim R., Farber I. C., Anglister L. Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys J. 1982 Sep;39(3):301–308. doi: 10.1016/S0006-3495(82)84520-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Gross E., Bedlack R. S., Jr, Loew L. M. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J. 1994 Jul;67(1):208–216. doi: 10.1016/S0006-3495(94)80471-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. HODGKIN A. L., HOROWICZ P. The effect of nitrate and other anions on the mechanical response of single muscle fibres. J Physiol. 1960 Sep;153:404–412. doi: 10.1113/jphysiol.1960.sp006542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. HOROWICZ P. THE EFFECTS OF ANIONS ON EXCITABLE CELLS. Pharmacol Rev. 1964 Jun;16:193–221. [PubMed] [Google Scholar]
  30. Hauser H., Hinckley C. C., Krebs J., Levine B. A., Phillips M. C., Williams R. J. The interaction of ions with phosphatidylcholine. Biochim Biophys Acta. 1977 Aug 1;468(3):364–377. doi: 10.1016/0005-2736(77)90288-7. [DOI] [PubMed] [Google Scholar]
  31. Hauser H., Phillips M. C., Barratt M. D. Differences in the interaction of inorganic and organic (hydrophobic) cations with phosphatidylserine membranes. Biochim Biophys Acta. 1975 Dec 16;413(3):341–353. doi: 10.1016/0005-2736(75)90120-0. [DOI] [PubMed] [Google Scholar]
  32. Herbette L., Napolitano C. A., McDaniel R. V. Direct determination of the calcium profile structure for dipalmitoyllecithin multilayers using neutron diffraction. Biophys J. 1984 Dec;46(6):677–685. doi: 10.1016/S0006-3495(84)84066-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Herrmann T. R., Jayaweera A. R., Shamoo A. E. Interaction of europium(III) with phospholipid vesicles as monitored by laser-excited europium(III) luminescence. Biochemistry. 1986 Sep 23;25(19):5834–5838. doi: 10.1021/bi00367a074. [DOI] [PubMed] [Google Scholar]
  34. Heyse S., Wuddel I., Apell H. J., Stürmer W. Partial reactions of the Na,K-ATPase: determination of rate constants. J Gen Physiol. 1994 Aug;104(2):197–240. doi: 10.1085/jgp.104.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Jendrasiak G. L. Halide interaction with phospholipids: proton magnetic resonance studies. Chem Phys Lipids. 1972 Oct;9(2):133–146. doi: 10.1016/0009-3084(72)90009-6. [DOI] [PubMed] [Google Scholar]
  36. Jendrasiak G. L., Smith R. L., McIntosh T. J. The effect of phloretin on the hydration of egg phosphatidylcholine multilayers. Biochim Biophys Acta. 1997 Oct 2;1329(1):159–168. doi: 10.1016/s0005-2736(97)00105-3. [DOI] [PubMed] [Google Scholar]
  37. KAHN A. J., SANDOW A. Effects of bromide, nitrate, and iodide on responses of skeletal muscle. Ann N Y Acad Sci. 1955 Sep 15;62(7):139–175. doi: 10.1111/j.1749-6632.1955.tb35370.x. [DOI] [PubMed] [Google Scholar]
  38. KAHN A. J., SANDOW A. The potentiation of muscular contraction by the nitrate-ion. Science. 1950 Dec 1;112(2918):647–649. doi: 10.1126/science.112.2918.647. [DOI] [PubMed] [Google Scholar]
  39. Kane D. J., Fendler K., Grell E., Bamberg E., Taniguchi K., Froehlich J. P., Clarke R. J. Stopped-flow kinetic investigations of conformational changes of pig kidney Na+,K+-ATPase. Biochemistry. 1997 Oct 28;36(43):13406–13420. doi: 10.1021/bi970598w. [DOI] [PubMed] [Google Scholar]
  40. Klodos I., Post R. L., Forbush B., 3rd Kinetic heterogeneity of phosphoenzyme of Na,K-ATPase modeled by unmixed lipid phases. Competence of the phosphointermediate. J Biol Chem. 1994 Jan 21;269(3):1734–1743. [PubMed] [Google Scholar]
  41. Loew L. M., Cohen L. B., Dix J., Fluhler E. N., Montana V., Salama G., Wu J. Y. A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J Membr Biol. 1992 Oct;130(1):1–10. doi: 10.1007/BF00233734. [DOI] [PubMed] [Google Scholar]
  42. Macdonald P. M., Seelig J. Anion binding to neutral and positively charged lipid membranes. Biochemistry. 1988 Sep 6;27(18):6769–6775. doi: 10.1021/bi00418a019. [DOI] [PubMed] [Google Scholar]
  43. McLaughlin A., Grathwohl C., McLaughlin S. The adsorption of divalent cations to phosphatidylcholine bilayer membranes. Biochim Biophys Acta. 1978 Nov 16;513(3):338–357. doi: 10.1016/0005-2736(78)90203-1. [DOI] [PubMed] [Google Scholar]
  44. McLaughlin S., Bruder A., Chen S., Moser C. Chaotropic anions and the surface potential of bilayer membranes. Biochim Biophys Acta. 1975 Jun 25;394(2):304–313. doi: 10.1016/0005-2736(75)90267-9. [DOI] [PubMed] [Google Scholar]
  45. Moncelli M. R., Becucci L., Buoninsegni F. T., Guidelli R. Surface dipole potential at the interface between water and self-assembled monolayers of phosphatidylserine and phosphatidic acid. Biophys J. 1998 May;74(5):2388–2397. doi: 10.1016/S0006-3495(98)77947-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Montana V., Farkas D. L., Loew L. M. Dual-wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry. 1989 May 30;28(11):4536–4539. doi: 10.1021/bi00437a003. [DOI] [PubMed] [Google Scholar]
  47. Müller W., Windisch H., Tritthart H. A. Fluorescent styryl dyes applied as fast optical probes of cardiac action potential. Eur Biophys J. 1986;14(2):103–111. doi: 10.1007/BF00263067. [DOI] [PubMed] [Google Scholar]
  48. Nørby J. G., Esmann M. The effect of ionic strength and specific anions on substrate binding and hydrolytic activities of Na,K-ATPase. J Gen Physiol. 1997 May;109(5):555–570. doi: 10.1085/jgp.109.5.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Petersheim M., Halladay H. N., Blodnieks J. Tb3+ and Ca2+ binding to phosphatidylcholine. A study comparing data from optical, NMR, and infrared spectroscopies. Biophys J. 1989 Sep;56(3):551–557. doi: 10.1016/S0006-3495(89)82702-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Pratap P. R., Robinson J. D. Rapid kinetic analyses of the Na+/K(+)-ATPase distinguish among different criteria for conformational change. Biochim Biophys Acta. 1993 Sep 5;1151(1):89–98. doi: 10.1016/0005-2736(93)90075-b. [DOI] [PubMed] [Google Scholar]
  51. Rychkov G. Y., Pusch M., Roberts M. L., Jentsch T. J., Bretag A. H. Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions. J Gen Physiol. 1998 May;111(5):653–665. doi: 10.1085/jgp.111.5.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rydall J. R., Macdonald P. M. Investigation of anion binding to neutral lipid membranes using 2H NMR. Biochemistry. 1992 Feb 4;31(4):1092–1099. doi: 10.1021/bi00119a018. [DOI] [PubMed] [Google Scholar]
  53. Scherer P. G., Seelig J. Electric charge effects on phospholipid headgroups. Phosphatidylcholine in mixtures with cationic and anionic amphiphiles. Biochemistry. 1989 Sep 19;28(19):7720–7728. doi: 10.1021/bi00445a030. [DOI] [PubMed] [Google Scholar]
  54. Schulz S., Apell H. J. Investigation of ion binding to the cytoplasmic binding sites of the Na,K-pump. Eur Biophys J. 1995;23(6):413–421. doi: 10.1007/BF00196828. [DOI] [PubMed] [Google Scholar]
  55. Seelig J., Macdonald P. M., Scherer P. G. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987 Dec 1;26(24):7535–7541. doi: 10.1021/bi00398a001. [DOI] [PubMed] [Google Scholar]
  56. Suzuki K., Post R. L. Equilibrium of phosphointermediates of sodium and potassium ion transport adenosine triphosphatase: action of sodium ion and Hofmeister effect. J Gen Physiol. 1997 May;109(5):537–554. doi: 10.1085/jgp.109.5.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Tatulian S. A. Binding of alkaline-earth metal cations and some anions to phosphatidylcholine liposomes. Eur J Biochem. 1987 Dec 30;170(1-2):413–420. doi: 10.1111/j.1432-1033.1987.tb13715.x. [DOI] [PubMed] [Google Scholar]
  58. Tatulian S. A. Effect of lipid phase transition on the binding of anions to dimyristoylphosphatidylcholine liposomes. Biochim Biophys Acta. 1983 Dec 21;736(2):189–195. doi: 10.1016/0005-2736(83)90283-3. [DOI] [PubMed] [Google Scholar]
  59. Verstraeten S. V., Nogueira L. V., Schreier S., Oteiza P. I. Effect of trivalent metal ions on phase separation and membrane lipid packing: role in lipid peroxidation. Arch Biochem Biophys. 1997 Feb 1;338(1):121–127. doi: 10.1006/abbi.1996.9810. [DOI] [PubMed] [Google Scholar]
  60. Westman J., Eriksson L. E. The interaction of various lanthanide ions and some anions with phosphatidylcholine vesicle membranes. A 31P NMR study of the surface potential effects. Biochim Biophys Acta. 1979 Oct 19;557(1):62–78. doi: 10.1016/0005-2736(79)90090-7. [DOI] [PubMed] [Google Scholar]
  61. Zhang J., Davidson R. M., Wei M. D., Loew L. M. Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons. Biophys J. 1998 Jan;74(1):48–53. doi: 10.1016/S0006-3495(98)77765-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Zheng C., Vanderkooi G. Molecular origin of the internal dipole potential in lipid bilayers: calculation of the electrostatic potential. Biophys J. 1992 Oct;63(4):935–941. doi: 10.1016/S0006-3495(92)81673-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Zouni A., Clarke R. J., Visser A. J., Visser N. V., Holzwarth J. F. Static and dynamic studies of the potential-sensitive membrane probe RH421 in dimyristoylphosphatidylcholine vesicles. Biochim Biophys Acta. 1993 Dec 12;1153(2):203–212. doi: 10.1016/0005-2736(93)90406-p. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES