Abstract
Recent work in our laboratory has investigated and modeled subcellular calcium compartmentation and Ca2+ movement under steady-state control conditions. This experimental study is directed to the further description and quantitation of cellular calcium compartmentation patterns and movements as correlated with contraction in neonatal rat cardiac myocytes in culture under a variety of calcium loading conditions. Compartmental contents were assessed after incubations in various [Ca2+]o, 0 Na+/1 mM Ca2+, and 10 microM ouabain/1.0 mM Ca2+ test solutions. The cellular components investigated include sarcolemmal bound, sarcoplasmic reticulum (SR), and mitochondrial calcium. The results indicate that 1) sarcolemmal calcium binding is insensitive to changes in [Ca2+]o in the range tested (0.25-6.0 mM) while highly sensitive to changes in [Na+]i; 2) SR is sensitive to both changes in [Ca2+]o and [Na+]i and exhibits a maximum loading capacity of approximately 750 micromol Ca2+/kg dw; 3) in the [Ca2+]o range between 0.25 and 2.0 mM, contractile amplitude is proportional to SR content; 4) the mitochondria comprise a high-capacity calcium-containing compartment that is sensitive to changes in [Ca2+]o but does not reach saturation under the conditions tested (0.25-8.0 mM [Ca2+]o); 5) SR calcium is divided into at least two functionally discrete pools, one of which is available for release to the myofilaments during a normal ICa-triggered contraction and other of which is caffeine releasable but unavailable for release to the myofilaments during a normal triggered release; and 6) mitochondrial calcium serves as a reservoir of calcium capable of replenishing and/or augmenting SR stores with anywhere from 10% to 50% of mitochondrial calcium cycling through SR calcium compartments.
Full Text
The Full Text of this article is available as a PDF (173.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bassani J. W., Bassani R. A., Bers D. M. Ca2+ cycling between sarcoplasmic reticulum and mitochondria in rabbit cardiac myocytes. J Physiol. 1993 Jan;460:603–621. doi: 10.1113/jphysiol.1993.sp019489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bers D. M. SR Ca loading in cardiac muscle preparations based on rapid-cooling contractures. Am J Physiol. 1989 Jan;256(1 Pt 1):C109–C120. doi: 10.1152/ajpcell.1989.256.1.C109. [DOI] [PubMed] [Google Scholar]
- Chapman R. A., Tunstall J. Evidence for the site of Na-Ca antagonism in cardiac muscle of the frog, Rana pipiens. J Physiol. 1969 Mar;201(1):9P–11P. [PubMed] [Google Scholar]
- Cheung J. Y., Leaf A., Bonventre J. V. Mitochondrial function and intracellular calcium in anoxic cardiac myocytes. Am J Physiol. 1986 Jan;250(1 Pt 1):C18–C25. doi: 10.1152/ajpcell.1986.250.1.C18. [DOI] [PubMed] [Google Scholar]
- Feher J. J., Rebeyka I. M. Cooling and pH jump-induced calcium release from isolated cardiac sarcoplasmic reticulum. Am J Physiol. 1994 Sep;267(3 Pt 2):H962–H969. doi: 10.1152/ajpheart.1994.267.3.H962. [DOI] [PubMed] [Google Scholar]
- Gunter T. E., Gunter K. K., Sheu S. S., Gavin C. E. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol. 1994 Aug;267(2 Pt 1):C313–C339. doi: 10.1152/ajpcell.1994.267.2.C313. [DOI] [PubMed] [Google Scholar]
- HARARY I., FARLEY B. In vitro studies on single beating rat heart cells. I. Growth and organization. Exp Cell Res. 1963 Feb;29:451–465. doi: 10.1016/s0014-4827(63)80008-7. [DOI] [PubMed] [Google Scholar]
- Hess P., Lansman J. B., Tsien R. W. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol. 1986 Sep;88(3):293–319. doi: 10.1085/jgp.88.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess P., Tsien R. W. Mechanism of ion permeation through calcium channels. 1984 May 31-Jun 6Nature. 309(5967):453–456. doi: 10.1038/309453a0. [DOI] [PubMed] [Google Scholar]
- Kawai M., Konishi M. Measurement of sarcoplasmic reticulum calcium content in skinned mammalian cardiac muscle. Cell Calcium. 1994 Aug;16(2):123–136. doi: 10.1016/0143-4160(94)90007-8. [DOI] [PubMed] [Google Scholar]
- LANGER G. A., BRADY A. J. Calcium flux in the mammalian ventricular myocardium. J Gen Physiol. 1963 Mar;46:703–719. doi: 10.1085/jgp.46.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langer G. A., Frank J. S., Philipson K. D. Preparation of sarcolemmal membrane from myocardial tissue culture monolayer by high-velocity gas dissection. Science. 1978 Jun 23;200(4348):1388–1391. doi: 10.1126/science.566465. [DOI] [PubMed] [Google Scholar]
- Langer G. A., Nudd L. M. Addition and kinetic characterization of mitochondrial calcium in myocardial tissue culture. Am J Physiol. 1980 Dec;239(6):H769–H774. doi: 10.1152/ajpheart.1980.239.6.H769. [DOI] [PubMed] [Google Scholar]
- Langer G. A., Nudd L. M. Calcium compartmentation in cardiac tissue culture: the effects of extracellular sodium depletion. J Mol Cell Cardiol. 1984 Nov;16(11):1047–1057. doi: 10.1016/s0022-2828(84)80017-6. [DOI] [PubMed] [Google Scholar]
- Langer G. A., Peskoff A. Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell. Biophys J. 1996 Mar;70(3):1169–1182. doi: 10.1016/S0006-3495(96)79677-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langer G. A., Rich T. L. A discrete Na-Ca exchange-dependent Ca compartment in rat ventricular cells: exchange and localization. Am J Physiol. 1992 May;262(5 Pt 1):C1149–C1153. doi: 10.1152/ajpcell.1992.262.5.C1149. [DOI] [PubMed] [Google Scholar]
- Langer G. A., Rich T. L. Further characterization of the Na-Ca exchange-dependent Ca compartment in rat ventricular cells. Am J Physiol. 1993 Aug;265(2 Pt 1):C556–C561. doi: 10.1152/ajpcell.1993.265.2.C556. [DOI] [PubMed] [Google Scholar]
- Langer G. A., Rich T. L., Orner F. B. Ca exchange under non-perfusion-limited conditions in rat ventricular cells: identification of subcellular compartments. Am J Physiol. 1990 Aug;259(2 Pt 2):H592–H602. doi: 10.1152/ajpheart.1990.259.2.H592. [DOI] [PubMed] [Google Scholar]
- Langer G. A., Wang S. Y., Rich T. L. Localization of the Na/Ca exchange-dependent Ca compartment in cultured neonatal rat heart cells. Am J Physiol. 1995 Jan;268(1 Pt 1):C119–C126. doi: 10.1152/ajpcell.1995.268.1.C119. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L. Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1520–1524. doi: 10.1073/pnas.71.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leisey J. R., Grotyohann L. W., Scott D. A., Scaduto R. C., Jr Regulation of cardiac mitochondrial calcium by average extramitochondrial calcium. Am J Physiol. 1993 Oct;265(4 Pt 2):H1203–H1208. doi: 10.1152/ajpheart.1993.265.4.H1203. [DOI] [PubMed] [Google Scholar]
- Marengo F. D., Wang S. Y., Langer G. A. The effects of temperature upon calcium exchange in intact cultured cardiac myocytes. Cell Calcium. 1997 Apr;21(4):263–273. doi: 10.1016/s0143-4160(97)90114-7. [DOI] [PubMed] [Google Scholar]
- Ohki S., Kurland R. Surface potential of phosphatidylserine monolayers. II. Divalent and monovalent ion binding. Biochim Biophys Acta. 1981 Jul 20;645(2):170–176. doi: 10.1016/0005-2736(81)90187-5. [DOI] [PubMed] [Google Scholar]
- Peskoff A., Langer G. A. Calcium concentration and movement in the ventricular cardiac cell during an excitation-contraction cycle. Biophys J. 1998 Jan;74(1):153–174. doi: 10.1016/S0006-3495(98)77776-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Post J. A., Kuwata J. H., Langer G. A. A discrete Na+/Ca2+ exchange dependent, Ca2+ compartment in cultured neonatal rat heart cells. Characteristics, localization and possible physiological function. Cell Calcium. 1993 Jan;14(1):61–71. doi: 10.1016/0143-4160(93)90019-3. [DOI] [PubMed] [Google Scholar]
- Post J. A., Langer G. A., Op den Kamp J. A., Verkleij A. J. Phospholipid asymmetry in cardiac sarcolemma. Analysis of intact cells and 'gas-dissected' membranes. Biochim Biophys Acta. 1988 Aug 18;943(2):256–266. doi: 10.1016/0005-2736(88)90557-3. [DOI] [PubMed] [Google Scholar]
- Post J. A., Langer G. A. Sarcolemmal calcium binding sites in heart: I. Molecular origin in "gas-dissected" sarcolemma. J Membr Biol. 1992 Jul;129(1):49–57. doi: 10.1007/BF00232054. [DOI] [PubMed] [Google Scholar]
- Rich T. L., Langer G. A., Klassen M. G. Two components of coupling calcium in single ventricular cell of rabbits and rats. Am J Physiol. 1988 May;254(5 Pt 2):H937–H946. doi: 10.1152/ajpheart.1988.254.5.H937. [DOI] [PubMed] [Google Scholar]
- Rousseau E., Meissner G. Single cardiac sarcoplasmic reticulum Ca2+-release channel: activation by caffeine. Am J Physiol. 1989 Feb;256(2 Pt 2):H328–H333. doi: 10.1152/ajpheart.1989.256.2.H328. [DOI] [PubMed] [Google Scholar]
- Tillisch J. H., Langer G. A. Myocardial mechanical responses and ionic exchange in high-sodium perfusate. Circ Res. 1974 Jan;34(1):40–50. doi: 10.1161/01.res.40.4.40. [DOI] [PubMed] [Google Scholar]
- WINEGRAD S. AUTORADIOGRAPHIC STUDIES OF INTRACELLULAR CALCIUM IN FROG SKELETAL MUSCLE. J Gen Physiol. 1965 Jan;48:455–479. doi: 10.1085/jgp.48.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S. Y., Winka L., Langer G. A. Role of calcium current and sarcoplasmic reticulum calcium release in control of myocardial contraction in rat and rabbit myocytes. J Mol Cell Cardiol. 1993 Nov;25(11):1339–1347. doi: 10.1006/jmcc.1993.1146. [DOI] [PubMed] [Google Scholar]
- Wendt-Gallitelli M. F., Voigt T., Isenberg G. Microheterogeneity of subsarcolemmal sodium gradients. Electron probe microanalysis in guinea-pig ventricular myocytes. J Physiol. 1993 Dec;472:33–44. doi: 10.1113/jphysiol.1993.sp019934. [DOI] [PMC free article] [PubMed] [Google Scholar]