Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 May;76(5):2711–2715. doi: 10.1016/S0006-3495(99)77423-0

Electronic spectra of PS I mutants: the peripheral subunits do not bind red chlorophylls in Synechocystis sp. PCC 6803.

V Soukoulis 1, S Savikhin 1, W Xu 1, P R Chitnis 1, W S Struve 1
PMCID: PMC1300240  PMID: 10233085

Abstract

Steady-state fluorescence and absorption spectra have been obtained in the Qy spectral region (690-780 nm and 600-750 nm, respectively) for several subunit-deficient photosystem I mutants from the cyanobacterium Synechocystis sp. PCC 6803. The 77 K fluorescence spectra of the wild-type and subunit-deficient mutant photosystem I particles are all very similar, peaking at approximately 720 nm with essentially the same excitation spectrum. Because emission from far-red chlorophylls absorbing near 708 nm dominates low-temperature fluorescence in Synechocystis sp., these pigments are not coordinated to any the subunits PsaF, Psa I, PsaJ, PsaK, PsaL, or psaM. The room temperature (wild-type-mutant) absorption difference spectra for trimeric mutants lacking the PsaF/J, PsaK, and PsaM subunits suggest that these mutants are deficient in core antenna chlorophylls (Chls) absorbing near 685, 670, 675, and 700 nm, respectively. The absorption difference spectrum for the PsaF/J/I/L-deficient photosystem I complexes at 5 K reveals considerably more structure than the room-temperature spectrum. The integrated absorbance difference spectra (when normalized to the total PS I Qy spectral area) are comparable to the fractions of Chls bound by the respective (groups of) subunits, according to the 4-A density map of PS I from Synechococcus elongatus. The spectrum of the monomeric PsaL-deficient mutant suggests that this subunit may bind pigments absorbing near 700 nm.

Full Text

The Full Text of this article is available as a PDF (138.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chitnis P. R. Photosystem I. Plant Physiol. 1996 Jul;111(3):661–669. doi: 10.1104/pp.111.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chitnis V. P., Chitnis P. R. PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 1993 Dec 27;336(2):330–334. doi: 10.1016/0014-5793(93)80831-e. [DOI] [PubMed] [Google Scholar]
  3. Chitnis V. P., Xu Q., Yu L., Golbeck J. H., Nakamoto H., Xie D. L., Chitnis P. R. Targeted inactivation of the gene psaL encoding a subunit of photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem. 1993 Jun 5;268(16):11678–11684. [PubMed] [Google Scholar]
  4. Hastings G., Hoshina S., Webber A. N., Blankenship R. E. Universality of energy and electron transfer processes in photosystem I. Biochemistry. 1995 Nov 28;34(47):15512–15522. doi: 10.1021/bi00047a017. [DOI] [PubMed] [Google Scholar]
  5. Jia Y., Jean J. M., Werst M. M., Chan C. K., Fleming G. R. Simulations of the temperature dependence of energy transfer in the PSI core antenna. Biophys J. 1992 Jul;63(1):259–273. doi: 10.1016/S0006-3495(92)81589-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Krauss N., Schubert W. D., Klukas O., Fromme P., Witt H. T., Saenger W. Photosystem I at 4 A resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Biol. 1996 Nov;3(11):965–973. doi: 10.1038/nsb1196-965. [DOI] [PubMed] [Google Scholar]
  7. Owens T. G., Webb S. P., Alberte R. S., Mets L., Fleming G. R. Antenna structure and excitation dynamics in photosystem I. I. Studies of detergent-isolated photosystem I preparations using time-resolved fluorescence analysis. Biophys J. 1988 May;53(5):733–745. doi: 10.1016/S0006-3495(88)83154-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sun J., Ke A., Jin P., Chitnis V. P., Chitnis P. R. Isolation and functional study of photosystem I subunits in the cyanobacterium Synechocystis sp. PCC 6803. Methods Enzymol. 1998;297:124–139. doi: 10.1016/s0076-6879(98)97010-0. [DOI] [PubMed] [Google Scholar]
  9. Trinkunas G., Holzwarth A. R. Kinetic modeling of exciton migration in photosynthetic systems. 2. Simulations of excitation dynamics in two-dimensional photosystem I core antenna/reaction center complexes. Biophys J. 1994 Feb;66(2 Pt 1):415–429. doi: 10.1016/s0006-3495(94)80792-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Werst M., Jia Y., Mets L., Fleming G. R. Energy transfer and trapping in the photosystem I core antenna. A temperature study. Biophys J. 1992 Apr;61(4):868–878. doi: 10.1016/S0006-3495(92)81894-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Xu Q., Yu L., Chitnis V. P., Chitnis P. R. Function and organization of photosystem I in a cyanobacterial mutant strain that lacks PsaF and PsaJ subunits. J Biol Chem. 1994 Feb 4;269(5):3205–3211. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES