Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 May;76(5):2716–2726. doi: 10.1016/S0006-3495(99)77424-2

Effect of glycerol on the interactions and solubility of bovine pancreatic trypsin inhibitor.

M Farnum 1, C Zukoski 1
PMCID: PMC1300241  PMID: 10233086

Abstract

The effects of additives used to stabilize protein structure during crystallization on protein solution phase behavior are poorly understood. Here we investigate the effect of glycerol and ionic strength on the solubility and strength of interactions of the bovine pancreatic trypsin inhibitor. These two variables are found to have opposite effects on the intermolecular forces; attractions increase with [NaCl], whereas repulsions increase with glycerol concentration. These changes are mirrored in bovine pancreatic trypsin inhibitor solubility where the typical salting out behavior for NaCl is observed with higher solubility found in buffers containing glycerol. The increased repulsions induced by glycerol can be explained by a number of possible mechanisms, all of which require small changes in the protein or the solvent in its immediate vicinity. Bovine pancreatic trypsin inhibitor follows the same general phase behavior as other globular macromolecules where a robust correlation between protein solution second virial coefficient and solubility has been developed. This study extends previous reports of this correlation to solution conditions involving nonelectrolyte additives.

Full Text

The Full Text of this article is available as a PDF (107.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amir D., Krausz S., Haas E. Detection of local structures in reduced unfolded bovine pancreatic trypsin inhibitor. Proteins. 1992 Apr;13(2):162–173. doi: 10.1002/prot.340130210. [DOI] [PubMed] [Google Scholar]
  2. Creighton T. E. Renaturation of the reduced bovine pancreatic trypsin inhibitor. J Mol Biol. 1974 Aug 15;87(3):563–577. doi: 10.1016/0022-2836(74)90104-1. [DOI] [PubMed] [Google Scholar]
  3. Ewing F., Forsythe E., Pusey M. Orthorhombic lysozyme solubility. Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):424–428. doi: 10.1107/S0907444993014428. [DOI] [PubMed] [Google Scholar]
  4. Gallagher W. H., Woodward C. K. The concentration dependence of the diffusion coefficient for bovine pancreatic trypsin inhibitor: a dynamic light scattering study of a small protein. Biopolymers. 1989 Nov;28(11):2001–2024. doi: 10.1002/bip.360281115. [DOI] [PubMed] [Google Scholar]
  5. Gekko K., Timasheff S. N. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry. 1981 Aug 4;20(16):4677–4686. doi: 10.1021/bi00519a024. [DOI] [PubMed] [Google Scholar]
  6. George A., Wilson W. W. Predicting protein crystallization from a dilute solution property. Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):361–365. doi: 10.1107/S0907444994001216. [DOI] [PubMed] [Google Scholar]
  7. Lakowicz J. R., Laczko G., Gryczynski I. Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry. Biochemistry. 1987 Jan 13;26(1):82–90. doi: 10.1021/bi00375a012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leckband D. E., Schmitt F. J., Israelachvili J. N., Knoll W. Direct force measurements of specific and nonspecific protein interactions. Biochemistry. 1994 Apr 19;33(15):4611–4624. doi: 10.1021/bi00181a023. [DOI] [PubMed] [Google Scholar]
  9. Makhatadze G. I., Kim K. S., Woodward C., Privalov P. L. Thermodynamics of BPTI folding. Protein Sci. 1993 Dec;2(12):2028–2036. doi: 10.1002/pro.5560021204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McPherson A. Current approaches to macromolecular crystallization. Eur J Biochem. 1990 Apr 20;189(1):1–23. doi: 10.1111/j.1432-1033.1990.tb15454.x. [DOI] [PubMed] [Google Scholar]
  11. Parkin S., Rupp B., Hope H. Structure of bovine pancreatic trypsin inhibitor at 125 K definition of carboxyl-terminal residues Gly57 and Ala58. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):18–29. doi: 10.1107/S0907444995008675. [DOI] [PubMed] [Google Scholar]
  12. Priev A., Almagor A., Yedgar S., Gavish B. Glycerol decreases the volume and compressibility of protein interior. Biochemistry. 1996 Feb 20;35(7):2061–2066. doi: 10.1021/bi951842r. [DOI] [PubMed] [Google Scholar]
  13. Ries-Kautt M. M., Ducruix A. F. Relative effectiveness of various ions on the solubility and crystal growth of lysozyme. J Biol Chem. 1989 Jan 15;264(2):745–748. [PubMed] [Google Scholar]
  14. Rosenbaum D, Zamora PC, Zukoski CF. Phase behavior of small attractive colloidal particles. Phys Rev Lett. 1996 Jan 1;76(1):150–153. doi: 10.1103/PhysRevLett.76.150. [DOI] [PubMed] [Google Scholar]
  15. Sousa R. Use of glycerol, polyols and other protein structure stabilizing agents in protein crystallization. Acta Crystallogr D Biol Crystallogr. 1995 May 1;51(Pt 3):271–277. doi: 10.1107/S0907444994014009. [DOI] [PubMed] [Google Scholar]
  16. Wüthrich K., Wagner G. Nuclear magnetic resonance of labile protons in the basic pancreatic trypsin inhibitor. J Mol Biol. 1979 May 5;130(1):1–18. doi: 10.1016/0022-2836(79)90548-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES