Abstract
We report a study wherein we contemporarily measured 1) the dehydration process of trehalose or sucrose glasses embedding carbonmonoxy-myoglobin (MbCO) and 2) the evolution of the A substates in saccharide-coated MbCO. Our results indicate that microcrystallization processes, sizeably different in the two saccharides, take place during dehydration; moreover, the microcrystalline structure is maintained unless the dry samples are equilibrated with a humidity >/=75% (>/=60%) at 25 degrees C for the trehalose (sucrose) sample. The evolution of the parameters that characterize the A substates of MbCO indicates that 1) the effects of water withdrawal are analogous in samples dried in the presence or in the absence of sugars, although much larger effects are observed in the samples without sugar; 2) the distribution of A substates is determined by the overall matrix structure and not only by the sample water content; and 3) the population of A0 substate (i. e., the substate currently put in relation with MbCO molecules having the distal histidine out of the heme pocket) is largely enhanced during the dehydration process. However, after rehumidification its population is largely decreased with respect to the values obtained, at similar water content, during the first dehydration run.
Full Text
The Full Text of this article is available as a PDF (139.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ansari A., Berendzen J., Braunstein D., Cowen B. R., Frauenfelder H., Hong M. K., Iben I. E., Johnson J. B., Ormos P., Sauke T. B. Rebinding and relaxation in the myoglobin pocket. Biophys Chem. 1987 May 9;26(2-3):337–355. doi: 10.1016/0301-4622(87)80034-0. [DOI] [PubMed] [Google Scholar]
- Brown W. E., 3rd, Sutcliffe J. W., Pulsinelli P. D. Multiple internal reflectance infrared spectra of variably hydrated hemoglobin and myoglobin films: effects of globin hydration on ligand conformer dynamics and reactivity at the heme. Biochemistry. 1983 Jun 7;22(12):2914–2923. doi: 10.1021/bi00281a021. [DOI] [PubMed] [Google Scholar]
- Caughey W. S., Shimada H., Choc M. G., Tucker M. P. Dynamic protein structures: infrared evidence for four discrete rapidly interconverting conformers at the carbon monoxide binding site of bovine heart myoglobin. Proc Natl Acad Sci U S A. 1981 May;78(5):2903–2907. doi: 10.1073/pnas.78.5.2903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cordone L., Galajda P., Vitrano E., Gassmann A., Ostermann A., Parak F. A reduction of protein specific motions in co-ligated myoglobin embedded in a trehalose glass. Eur Biophys J. 1998;27(2):173–176. doi: 10.1007/s002490050123. [DOI] [PubMed] [Google Scholar]
- Crowe L. M., Reid D. S., Crowe J. H. Is trehalose special for preserving dry biomaterials? Biophys J. 1996 Oct;71(4):2087–2093. doi: 10.1016/S0006-3495(96)79407-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di Pace A., Cupane A., Leone M., Vitrano E., Cordone L. Protein dynamics. Vibrational coupling, spectral broadening mechanisms, and anharmonicity effects in carbonmonoxy heme proteins studied by the temperature dependence of the Soret band lineshape. Biophys J. 1992 Aug;63(2):475–484. doi: 10.1016/S0006-3495(92)81606-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doster W., Cusack S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989 Feb 23;337(6209):754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
- Friedman J. M. Structure, dynamics, and reactivity in hemoglobin. Science. 1985 Jun 14;228(4705):1273–1280. doi: 10.1126/science.4001941. [DOI] [PubMed] [Google Scholar]
- Hagen S. J., Hofrichter J., Eaton W. A. Protein reaction kinetics in a room-temperature glass. Science. 1995 Aug 18;269(5226):959–962. doi: 10.1126/science.7638618. [DOI] [PubMed] [Google Scholar]
- Kleinert T., Doster W., Leyser H., Petry W., Schwarz V., Settles M. Solvent composition and viscosity effects on the kinetics of CO binding to horse myoglobin. Biochemistry. 1998 Jan 13;37(2):717–733. doi: 10.1021/bi971508q. [DOI] [PubMed] [Google Scholar]
- Leslie S. B., Israeli E., Lighthart B., Crowe J. H., Crowe L. M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995 Oct;61(10):3592–3597. doi: 10.1128/aem.61.10.3592-3597.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makinen M. W., Houtchens R. A., Caughey W. S. Structure of carboxymyoglobin in crystals and in solution. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6042–6046. doi: 10.1073/pnas.76.12.6042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer E. FTIR spectroscopic study of the dynamics of conformational substates in hydrated carbonyl-myoglobin films via temperature dependence of the CO stretching band parameters. Biophys J. 1994 Aug;67(2):862–873. doi: 10.1016/S0006-3495(94)80547-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melchers B., Knapp E. W., Parak F., Cordone L., Cupane A., Leone M. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy. Biophys J. 1996 May;70(5):2092–2099. doi: 10.1016/S0006-3495(96)79775-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morikis D., Champion P. M., Springer B. A., Sligar S. G. Resonance raman investigations of site-directed mutants of myoglobin: effects of distal histidine replacement. Biochemistry. 1989 May 30;28(11):4791–4800. doi: 10.1021/bi00437a041. [DOI] [PubMed] [Google Scholar]
- Mourant J. R., Braunstein D. P., Chu K., Frauenfelder H., Nienhaus G. U., Ormos P., Young R. D. Ligand binding to heme proteins: II. Transitions in the heme pocket of myoglobin. Biophys J. 1993 Oct;65(4):1496–1507. doi: 10.1016/S0006-3495(93)81218-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nienhaus G. U., Mourant J. R., Frauenfelder H. Spectroscopic evidence for conformational relaxation in myoglobin. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2902–2906. doi: 10.1073/pnas.89.7.2902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panek A. D. Trehalose metabolism--new horizons in technological applications. Braz J Med Biol Res. 1995 Feb;28(2):169–181. [PubMed] [Google Scholar]
- Prestrelski S. J., Tedeschi N., Arakawa T., Carpenter J. F. Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J. 1993 Aug;65(2):661–671. doi: 10.1016/S0006-3495(93)81120-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sastry G. M., Agmon N. Trehalose prevents myoglobin collapse and preserves its internal mobility. Biochemistry. 1997 Jun 10;36(23):7097–7108. doi: 10.1021/bi9626057. [DOI] [PubMed] [Google Scholar]
- Uritani M., Takai M., Yoshinaga K. Protective effect of disaccharides on restriction endonucleases during drying under vacuum. J Biochem. 1995 Apr;117(4):774–779. doi: 10.1093/oxfordjournals.jbchem.a124775. [DOI] [PubMed] [Google Scholar]