Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 May;76(5):2752–2759. doi: 10.1016/s0006-3495(99)77428-x

Thermodynamics and kinetics of a folded-folded' transition at valine-9 of a GCN4-like leucine zipper.

D A d'Avignon 1, G L Bretthorst 1, M E Holtzer 1, A Holtzer 1
PMCID: PMC1300245  PMID: 10233090

Abstract

Spin inversion transfer (SIT) NMR experiments are reported probing the thermodynamics and kinetics of interconversion of two folded forms of a GCN4-like leucine zipper near room temperature. The peptide is 13Calpha-labeled at position V9(a) and results are compared with prior findings for position L13(e). The SIT data are interpreted via a Bayesian analysis, yielding local values of T1a, T1b, kab, kba, and Keq as functions of temperature for the transition FaV9 right arrow over left arrow FbV9 between locally folded dimeric forms. Equilibrium constants, determined from relative spin counts at spin equilibrium, agree well with the ratios kab/kba from the dynamic SIT experiments. Thermodynamic and kinetic parameters are similar for V9(a) and L13(e), but not the same, confirming that the molecular conformational population is not two-state. The energetic parameters determined for both sites are examined, yielding conclusions that apply to both and are robust to uncertainties in the preexponential factor (kT/h) of the Eyring equation. These conclusions are 1) the activation free energy is substantial, requiring a sparsely populated transition state; 2) the transition state's enthalpy far exceeds that of either Fa or Fb; 3) the transition state's entropy far exceeds that of Fa, but is comparable to that of Fb; 4) "Arrhenius kinetics" characterize the temperature dependence of both kab and kba, indicating that the temperatures of slow interconversion are not below that of the glass transition. Any postulated free energy surface for these coiled coils must satisfy these constraints.

Full Text

The Full Text of this article is available as a PDF (109.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chan H. S., Dill K. A. Protein folding in the landscape perspective: chevron plots and non-Arrhenius kinetics. Proteins. 1998 Jan;30(1):2–33. doi: 10.1002/(sici)1097-0134(19980101)30:1<2::aid-prot2>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  2. Dill K. A., Chan H. S. From Levinthal to pathways to funnels. Nat Struct Biol. 1997 Jan;4(1):10–19. doi: 10.1038/nsb0197-10. [DOI] [PubMed] [Google Scholar]
  3. Goodman E. M., Kim P. S. Periodicity of amide proton exchange rates in a coiled-coil leucine zipper peptide. Biochemistry. 1991 Dec 17;30(50):11615–11620. doi: 10.1021/bi00114a002. [DOI] [PubMed] [Google Scholar]
  4. Holtzer M. E., Crimmins D. L., Holtzer A. Structural stability of short subsequences of the tropomyosin chain. Biopolymers. 1995 Jan;35(1):125–136. doi: 10.1002/bip.360350113. [DOI] [PubMed] [Google Scholar]
  5. Holtzer M. E., Lovett E. G., d'Avignon D. A., Holtzer A. Thermal unfolding in a GCN4-like leucine zipper: 13C alpha NMR chemical shifts and local unfolding curves. Biophys J. 1997 Aug;73(2):1031–1041. doi: 10.1016/S0006-3495(97)78136-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kenar K. T., García-Moreno B., Freire E. A calorimetric characterization of the salt dependence of the stability of the GCN4 leucine zipper. Protein Sci. 1995 Sep;4(9):1934–1938. doi: 10.1002/pro.5560040929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Laurents D. V., Baldwin R. L. Protein folding: matching theory and experiment. Biophys J. 1998 Jul;75(1):428–434. doi: 10.1016/S0006-3495(98)77530-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lovett E. G., D'Avignon D. A., Holtzer M. E., Braswell E. H., Zhu D., Holtzer A. Observation via one-dimensional 13Calpha NMR of local conformational substates in thermal unfolding equilibria of a synthetic analog of the GCN4 leucine zipper. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1781–1785. doi: 10.1073/pnas.93.5.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lupas A. Coiled coils: new structures and new functions. Trends Biochem Sci. 1996 Oct;21(10):375–382. [PubMed] [Google Scholar]
  10. McLachlan A. D., Stewart M. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol. 1975 Oct 25;98(2):293–304. doi: 10.1016/s0022-2836(75)80119-7. [DOI] [PubMed] [Google Scholar]
  11. Nymeyer H., García A. E., Onuchic J. N. Folding funnels and frustration in off-lattice minimalist protein landscapes. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5921–5928. doi: 10.1073/pnas.95.11.5921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
  13. O'Shea E. K., Rutkowski R., Kim P. S. Evidence that the leucine zipper is a coiled coil. Science. 1989 Jan 27;243(4890):538–542. doi: 10.1126/science.2911757. [DOI] [PubMed] [Google Scholar]
  14. Oliveberg M., Tan Y. J., Silow M., Fersht A. R. The changing nature of the protein folding transition state: implications for the shape of the free-energy profile for folding. J Mol Biol. 1998 Apr 10;277(4):933–943. doi: 10.1006/jmbi.1997.1612. [DOI] [PubMed] [Google Scholar]
  15. Tan Y. J., Oliveberg M., Fersht A. R. Titration properties and thermodynamics of the transition state for folding: comparison of two-state and multi-state folding pathways. J Mol Biol. 1996 Nov 29;264(2):377–389. doi: 10.1006/jmbi.1996.0647. [DOI] [PubMed] [Google Scholar]
  16. d'Avignon D. A., Bretthorst G. L., Holtzer M. E., Holtzer A. Site-specific thermodynamics and kinetics of a coiled-coil transition by spin inversion transfer NMR. Biophys J. 1998 Jun;74(6):3190–3197. doi: 10.1016/S0006-3495(98)78025-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES