Abstract
The secondary structural changes of the membrane protein, bacteriorhodopsin, are studied during the premelting reversible transition by using laser-induced temperature jump technique and nanosecond time-resolved Fourier transform infrared spectroscopy. The helical structural changes are triggered by using a 15 degrees C temperature jump induced from a preheated bacteriorhodopsin in D2O solution at a temperature of 72 degrees C. The structural transition from alphaII- to alphaI-helices is observed by following the change in the frequency of the amide I band from 1667 to 1651 cm-1 and the shift in the frequency of the amide II vibration from 1542 cm-1 to 1436 cm-1 upon H/D exchange. It is found that although the amide I band changes its frequency on a time scale of <100 ns, the H/D exchange shifts the frequency of the amide II band and causes a complex changes in the 1651-1600 cm-1 and 1530-1430 cm-1 frequency region on a longer time scale (>300 ns). Our result suggests that in this "premelting transition" temperature region of bacteriorhodopsin, an intrahelical conformation conversion of the alphaII to alphaI leads to the exposure of the hydrophobic region of the protein to the aqueous medium.
Full Text
The Full Text of this article is available as a PDF (95.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arrondo J. L., Castresana J., Valpuesta J. M., Goñi F. M. Structure and thermal denaturation of crystalline and noncrystalline cytochrome oxidase as studied by infrared spectroscopy. Biochemistry. 1994 Sep 27;33(38):11650–11655. doi: 10.1021/bi00204a029. [DOI] [PubMed] [Google Scholar]
- Ballew R. M., Sabelko J., Gruebele M. Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5759–5764. doi: 10.1073/pnas.93.12.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birge R. R. Photophysics and molecular electronic applications of the rhodopsins. Annu Rev Phys Chem. 1990;41:683–733. doi: 10.1146/annurev.pc.41.100190.003343. [DOI] [PubMed] [Google Scholar]
- Brouillette C. G., Muccio D. D., Finney T. K. pH dependence of bacteriorhodopsin thermal unfolding. Biochemistry. 1987 Nov 17;26(23):7431–7438. doi: 10.1021/bi00397a035. [DOI] [PubMed] [Google Scholar]
- Cladera J., Galisteo M. L., Sabés M., Mateo P. L., Padrós E. The role of retinal in the thermal stability of the purple membrane. Eur J Biochem. 1992 Jul 15;207(2):581–585. doi: 10.1111/j.1432-1033.1992.tb17084.x. [DOI] [PubMed] [Google Scholar]
- Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
- Jackson M. B., Sturtevant J. M. Phase transitions of the purple membranes of Halobacterium halobium. Biochemistry. 1978 Mar 7;17(5):911–915. doi: 10.1021/bi00598a026. [DOI] [PubMed] [Google Scholar]
- Krimm S., Dwivedi A. M. Infrared spectrum of the purple membrane: clue to a proton conduction mechanism? Science. 1982 Apr 23;216(4544):407–408. doi: 10.1126/science.6280277. [DOI] [PubMed] [Google Scholar]
- Lanyi J. K. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. Biochim Biophys Acta. 1993 Dec 7;1183(2):241–261. doi: 10.1016/0005-2728(93)90226-6. [DOI] [PubMed] [Google Scholar]
- Mathies R. A., Lin S. W., Ames J. B., Pollard W. T. From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. Annu Rev Biophys Biophys Chem. 1991;20:491–518. doi: 10.1146/annurev.bb.20.060191.002423. [DOI] [PubMed] [Google Scholar]
- Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
- Otto H., Marti T., Holz M., Mogi T., Stern L. J., Engel F., Khorana H. G., Heyn M. P. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1018–1022. doi: 10.1073/pnas.87.3.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips C. M., Mizutani Y., Hochstrasser R. M. Ultrafast thermally induced unfolding of RNase A. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7292–7296. doi: 10.1073/pnas.92.16.7292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shnyrov V. L., Mateo P. L. Thermal transitions in the purple membrane from Halobacterium halobium. FEBS Lett. 1993 Jun 14;324(2):237–240. doi: 10.1016/0014-5793(93)81400-t. [DOI] [PubMed] [Google Scholar]
- Surewicz W. K., Mantsch H. H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta. 1988 Jan 29;952(2):115–130. doi: 10.1016/0167-4838(88)90107-0. [DOI] [PubMed] [Google Scholar]
- Taneva S. G., Caaveiro J. M., Muga A., Goñi F. M. A pathway for the thermal destabilization of bacteriorhodopsin. FEBS Lett. 1995 Jul 3;367(3):297–300. doi: 10.1016/0014-5793(95)00570-y. [DOI] [PubMed] [Google Scholar]
- Torres J., Sepulcre F., Padrós E. Conformational changes in bacteriorhodopsin associated with protein-protein interactions: a functional alpha I-alpha II helix switch? Biochemistry. 1995 Dec 19;34(50):16320–16326. doi: 10.1021/bi00050a012. [DOI] [PubMed] [Google Scholar]
- Tuzi S., Naito A., Saitô H. 13C NMR study on conformation and dynamics of the transmembrane alpha-helices, loops, and C-terminus of [3-13C]Ala-labeled bacteriorhodopsin. Biochemistry. 1994 Dec 20;33(50):15046–15052. doi: 10.1021/bi00254a013. [DOI] [PubMed] [Google Scholar]
- Vogel H., Gärtner W. The secondary structure of bacteriorhodopsin determined by Raman and circular dichroism spectroscopy. J Biol Chem. 1987 Aug 25;262(24):11464–11469. [PubMed] [Google Scholar]
- Williams S., Causgrove T. P., Gilmanshin R., Fang K. S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry. 1996 Jan 23;35(3):691–697. doi: 10.1021/bi952217p. [DOI] [PubMed] [Google Scholar]