Abstract
A nondestructive method to determine viscoelastic properties of gels and fluids involves an oscillating glass fiber serving as a sensor for the viscosity of the surrounding fluid. Extremely small displacements (typically 1-100 nm) are caused by the glass rod oscillating at its resonance frequency. These displacements are analyzed using a phase-sensitive acoustic microscope. Alterations of the elastic modulus of a fluid or gel change the propagation speed of a longitudinal acoustic wave. The system allows to study quantities as small as 10 microliters with temporal resolution >1 Hz. For 2-100 microM f-actin gels a final viscosity of 1.3-9.4 mPa s and a final elastic modulus of 2.229-2.254 GPa (corresponding to 1493-1501 m/s sound velocity) have been determined. For 10- to 100-microM microtubule gels (native, without stabilization by taxol), a final viscosity of 1.5-124 mPa s and a final elastic modulus of 2.288-2. 547 GPa (approximately 1513-1596 m/s) have been determined. During polymerization the sound velocity in low-concentration actin solutions increased up to +1.3 m/s (approximately 1.69 kPa) and decreased up to -7 m/s (approximately 49 kPa) at high actin concentrations. On polymerization of tubulin a concentration-dependent decrease of sound velocity was observed, too (+48 to -12 m/s approximately 2.3-0.1 MPa, for 10- to 100-microM tubulin). This decrease was interpreted by a nematic phase transition of the actin filaments and microtubules with increasing concentration. 2 mM ATP (when compared to 0.2 mM ATP) increased polymerization rate, final viscosity and elastic modulus of f-actin (17 microM). The actin-binding glycolytic enzyme hexokinase also accelerated the polymerization rate and final viscosity but elastic modulus (2.26 GPa) was less than for f-actin polymerized in presence of 0.2 mM ATP (2.28 GPa).
Full Text
The Full Text of this article is available as a PDF (332.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bereiter-Hahn J., Karl I., Lüers H., Vöth M. Mechanical basis of cell shape: investigations with the scanning acoustic microscope. Biochem Cell Biol. 1995 Jul-Aug;73(7-8):337–348. doi: 10.1139/o95-042. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brown P. A., Berlin R. D. Packing volume of sedimented microtubules: regulation and potential relationship to an intracellular matrix. J Cell Biol. 1985 Oct;101(4):1492–1500. doi: 10.1083/jcb.101.4.1492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buxbaum R. E., Dennerll T., Weiss S., Heidemann S. R. F-actin and microtubule suspensions as indeterminate fluids. Science. 1987 Mar 20;235(4795):1511–1514. doi: 10.1126/science.2881354. [DOI] [PubMed] [Google Scholar]
- Cooper J. A., Pollard T. D. Methods to measure actin polymerization. Methods Enzymol. 1982;85(Pt B):182–210. doi: 10.1016/0076-6879(82)85021-0. [DOI] [PubMed] [Google Scholar]
- Dancker P., Fischer S. Stabilization of actin filaments by ATP and inorganic phosphate. Z Naturforsch C. 1989 Jul-Aug;44(7-8):698–704. doi: 10.1515/znc-1989-7-824. [DOI] [PubMed] [Google Scholar]
- Dancker P., Hess L. Phalloidin reduces the release of inorganic phosphate during actin polymerization. Biochim Biophys Acta. 1990 Aug 17;1035(2):197–200. doi: 10.1016/0304-4165(90)90116-e. [DOI] [PubMed] [Google Scholar]
- Dancker P., Löw I., Hasselbach W., Wieland T. Interaction of actin with phalloidin: polymerization and stabilization of F-actin. Biochim Biophys Acta. 1975 Aug 19;400(2):407–414. doi: 10.1016/0005-2795(75)90196-8. [DOI] [PubMed] [Google Scholar]
- De La Cruz E. M., Pollard T. D. Transient kinetic analysis of rhodamine phalloidin binding to actin filaments. Biochemistry. 1994 Dec 6;33(48):14387–14392. doi: 10.1021/bi00252a003. [DOI] [PubMed] [Google Scholar]
- Emerman J. T., Pitelka D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro. 1977 May;13(5):316–328. doi: 10.1007/BF02616178. [DOI] [PubMed] [Google Scholar]
- Estes J. E., Selden L. A., Gershman L. C. Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry. 1981 Feb 17;20(4):708–712. doi: 10.1021/bi00507a006. [DOI] [PubMed] [Google Scholar]
- Feramisco J. R., Burridge K. A rapid purification of alpha-actinin, filamin, and a 130,000-dalton protein from smooth muscle. J Biol Chem. 1980 Feb 10;255(3):1194–1199. [PubMed] [Google Scholar]
- Griffith L. M., Pollard T. D. Cross-linking of actin filament networks by self-association and actin-binding macromolecules. J Biol Chem. 1982 Aug 10;257(15):9135–9142. [PubMed] [Google Scholar]
- Hartwig J. H., Kwiatkowski D. J. Actin-binding proteins. Curr Opin Cell Biol. 1991 Feb;3(1):87–97. doi: 10.1016/0955-0674(91)90170-4. [DOI] [PubMed] [Google Scholar]
- Holmes G. R., Goll D. E., Suzuki A. Effect of -actinin on actin viscosity. Biochim Biophys Acta. 1971 Nov 2;253(1):240–253. doi: 10.1016/0005-2728(71)90250-7. [DOI] [PubMed] [Google Scholar]
- Howard W. D., Timasheff S. N. Linkages between the effects of taxol, colchicine, and GTP on tubulin polymerization. J Biol Chem. 1988 Jan 25;263(3):1342–1346. [PubMed] [Google Scholar]
- Ingber D. E. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci. 1993 Mar;104(Pt 3):613–627. doi: 10.1242/jcs.104.3.613. [DOI] [PubMed] [Google Scholar]
- Janmey P. A., Euteneuer U., Traub P., Schliwa M. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol. 1991 Apr;113(1):155–160. doi: 10.1083/jcb.113.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janmey P. A., Hvidt S., Käs J., Lerche D., Maggs A., Sackmann E., Schliwa M., Stossel T. P. The mechanical properties of actin gels. Elastic modulus and filament motions. J Biol Chem. 1994 Dec 23;269(51):32503–32513. [PubMed] [Google Scholar]
- Janmey P. A., Hvidt S., Lamb J., Stossel T. P. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature. 1990 May 3;345(6270):89–92. doi: 10.1038/345089a0. [DOI] [PubMed] [Google Scholar]
- Janmey P. A., Hvidt S., Oster G. F., Lamb J., Stossel T. P., Hartwig J. H. Effect of ATP on actin filament stiffness. Nature. 1990 Sep 6;347(6288):95–99. doi: 10.1038/347095a0. [DOI] [PubMed] [Google Scholar]
- Leung W. P., Cho K. C., Lo Y. M., Choy C. L. Adiabatic compressibility of myoglobin. Effect of axial ligand and denaturation. Biochim Biophys Acta. 1986 Mar 7;870(1):148–153. doi: 10.1016/0167-4838(86)90018-x. [DOI] [PubMed] [Google Scholar]
- Newman J., Zaner K. S., Schick K. L., Gershman L. C., Selden L. A., Kinosian H. J., Travis J. L., Estes J. E. Nucleotide exchange and rheometric studies with F-actin prepared from ATP- or ADP-monomeric actin. Biophys J. 1993 May;64(5):1559–1566. doi: 10.1016/S0006-3495(93)81525-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olmsted J. B., Borisy G. G. Characterization of microtubule assembly in porcine brain extracts by viscometry. Biochemistry. 1973 Oct 9;12(21):4282–4289. doi: 10.1021/bi00745a037. [DOI] [PubMed] [Google Scholar]
- Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
- Pollard T. D., Goldberg I., Schwarz W. H. Nucleotide exchange, structure, and mechanical properties of filaments assembled from ATP-actin and ADP-actin. J Biol Chem. 1992 Oct 5;267(28):20339–20345. [PubMed] [Google Scholar]
- Pollard T. D. Polymerization of ADP-actin. J Cell Biol. 1984 Sep;99(3):769–777. doi: 10.1083/jcb.99.3.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato M., Leimbach G., Schwarz W. H., Pollard T. D. Mechanical properties of actin. J Biol Chem. 1985 Jul 15;260(14):8585–8592. [PubMed] [Google Scholar]
- Sato M., Schwartz W. H., Selden S. C., Pollard T. D. Mechanical properties of brain tubulin and microtubules. J Cell Biol. 1988 Apr;106(4):1205–1211. doi: 10.1083/jcb.106.4.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato M., Schwarz W. H., Pollard T. D. Dependence of the mechanical properties of actin/alpha-actinin gels on deformation rate. 1987 Feb 26-Mar 4Nature. 325(6107):828–830. doi: 10.1038/325828a0. [DOI] [PubMed] [Google Scholar]
- Schmidt F. G., Ziemann F., Sackmann E. Shear field mapping in actin networks by using magnetic tweezers. Eur Biophys J. 1996;24(5):348–353. doi: 10.1007/BF00180376. [DOI] [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- Suzuki N., Tamura Y., Mihashi K. Compressibility and specific volume of actin decrease upon G to F transformation. Biochim Biophys Acta. 1996 Feb 8;1292(2):265–272. doi: 10.1016/0167-4838(95)00213-8. [DOI] [PubMed] [Google Scholar]
- Tamura Y., Suzuki N., Mihashi K. Adiabatic compressibility of myosin subfragment-1 and heavy meromyosin with or without nucleotide. Biophys J. 1993 Nov;65(5):1899–1905. doi: 10.1016/S0006-3495(93)81260-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang J. X., Janmey P. A. The polyelectrolyte nature of F-actin and the mechanism of actin bundle formation. J Biol Chem. 1996 Apr 12;271(15):8556–8563. doi: 10.1074/jbc.271.15.8556. [DOI] [PubMed] [Google Scholar]
- Unger E., Böhm K. J., Vater W. Structural diversity and dynamics of microtubules and polymorphic tubulin assemblies. Electron Microsc Rev. 1990;3(2):355–395. doi: 10.1016/0892-0354(90)90007-f. [DOI] [PubMed] [Google Scholar]
- Vater W., Fritzsche W., Schaper A., Böhm K. J., Unger E., Jovin T. M. Scanning force microscopy of microtubules and polymorphic tubulin assemblies in air and in liquid. J Cell Sci. 1995 Mar;108(Pt 3):1063–1069. doi: 10.1242/jcs.108.3.1063. [DOI] [PubMed] [Google Scholar]
- Wachsstock D. H., Schwartz W. H., Pollard T. D. Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophys J. 1993 Jul;65(1):205–214. doi: 10.1016/S0006-3495(93)81059-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu J., Wirtz D., Pollard T. D. Dynamic cross-linking by alpha-actinin determines the mechanical properties of actin filament networks. J Biol Chem. 1998 Apr 17;273(16):9570–9576. doi: 10.1074/jbc.273.16.9570. [DOI] [PubMed] [Google Scholar]
- Zaner K. S., Stossel T. P. Physical basis of the rheologic properties of F-actin. J Biol Chem. 1983 Sep 25;258(18):11004–11009. [PubMed] [Google Scholar]