Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 May;76(5):2833–2842. doi: 10.1016/S0006-3495(99)77437-0

Electrorotation studies of baby hamster kidney fibroblasts infected with herpes simplex virus type 1.

S Archer 1, H Morgan 1, F J Rixon 1
PMCID: PMC1300254  PMID: 10233099

Abstract

The dielectric properties of baby hamster kidney fibroblast (BHK(C-13)) cells have been measured using electrorotation before and after infection with herpes simplex virus type 1 (HSV-1). The dielectric properties and morphology of the cells were investigated as a function of time after infection. The mean specific capacitance of the uninfected cells was 2.0 microF/cm2, reducing to a value of 1. 5 microF/cm2 at 12 h after infection. This change was interpreted as arising from changes in the cell membrane morphology coupled with alterations in the composition of the cell membrane as infection progressed. The measured changes in the cell capacitance were correlated with alterations in cellular morphology determined from scanning electron microscope (SEM) images. Between 9 and 12 h after infection the internal permittivity of the cell exhibited a rapid change, reducing in value from 75epsilono to 58epsilono, which can be correlated with the generation of large numbers of Golgi-derived membrane vesicles and enveloped viral capsids. The data are discussed in relation to the known life cycle of HSV-1 and indicate that electrorotation can be used to observe dynamic changes in both the dielectric and morphological properties of virus-infected cells. Calculations of the dielectrophoretic spectrum of uninfected and infected cells have been performed, and the results show that cells in the two states could be separated using appropriate frequencies and electrode arrays.

Full Text

The Full Text of this article is available as a PDF (145.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold W. M., Schmutzler R. K., Al-Hasani S., Krebs D., Zimmermann U. Differences in membrane properties between unfertilised and fertilised single rabbit oocytes demonstrated by electro-rotation. Comparison with cells from early embryos. Biochim Biophys Acta. 1989 Feb 13;979(1):142–146. doi: 10.1016/0005-2736(89)90535-x. [DOI] [PubMed] [Google Scholar]
  2. Becker F. F., Wang X. B., Huang Y., Pethig R., Vykoukal J., Gascoyne P. R. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):860–864. doi: 10.1073/pnas.92.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Browne H., Bell S., Minson T., Wilson D. W. An endoplasmic reticulum-retained herpes simplex virus glycoprotein H is absent from secreted virions: evidence for reenvelopment during egress. J Virol. 1996 Jul;70(7):4311–4316. doi: 10.1128/jvi.70.7.4311-4316.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gascoyne P., Pethig R., Satayavivad J., Becker F. F., Ruchirawat M. Dielectrophoretic detection of changes in erythrocyte membranes following malarial infection. Biochim Biophys Acta. 1997 Jan 31;1323(2):240–252. doi: 10.1016/s0005-2736(96)00191-5. [DOI] [PubMed] [Google Scholar]
  5. Gimsa J., Marszalek P., Loewe U., Tsong T. Y. Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells. Biophys J. 1991 Oct;60(4):749–760. doi: 10.1016/S0006-3495(91)82109-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gimsa J., Müller T., Schnelle T., Fuhr G. Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm. Biophys J. 1996 Jul;71(1):495–506. doi: 10.1016/S0006-3495(96)79251-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gimsa J., Schnelle T., Zechel G., Glaser R. Dielectric spectroscopy of human erythrocytes: investigations under the influence of nystatin. Biophys J. 1994 Apr;66(4):1244–1253. doi: 10.1016/S0006-3495(94)80908-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hu X., Arnold W. M., Zimmermann U. Alterations in the electrical properties of T and B lymphocyte membranes induced by mitogenic stimulation. Activation monitored by electro-rotation of single cells. Biochim Biophys Acta. 1990 Jan 29;1021(2):191–200. doi: 10.1016/0005-2736(90)90033-k. [DOI] [PubMed] [Google Scholar]
  9. Huang Y., Hölzel R., Pethig R., Wang X. B. Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol. 1992 Jul;37(7):1499–1517. doi: 10.1088/0031-9155/37/7/003. [DOI] [PubMed] [Google Scholar]
  10. Huang Y., Wang X. B., Becker F. F., Gascoyne P. R. Membrane changes associated with the temperature-sensitive P85gag-mos-dependent transformation of rat kidney cells as determined by dielectrophoresis and electrorotation. Biochim Biophys Acta. 1996 Jun 13;1282(1):76–84. doi: 10.1016/0005-2736(96)00047-8. [DOI] [PubMed] [Google Scholar]
  11. Huang Y., Wang X. B., Hölzel R., Becker F. F., Gascoyne P. R. Electrorotational studies of the cytoplasmic dielectric properties of Friend murine erythroleukaemia cells. Phys Med Biol. 1995 Nov;40(11):1789–1806. doi: 10.1088/0031-9155/40/11/002. [DOI] [PubMed] [Google Scholar]
  12. Hutchinson L., Roop-Beauchamp C., Johnson D. C. Herpes simplex virus glycoprotein K is known to influence fusion of infected cells, yet is not on the cell surface. J Virol. 1995 Jul;69(7):4556–4563. doi: 10.1128/jvi.69.7.4556-4563.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hölzel R. Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz. Biophys J. 1997 Aug;73(2):1103–1109. doi: 10.1016/S0006-3495(97)78142-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson D. C., Spear P. G. Monensin inhibits the processing of herpes simplex virus glycoproteins, their transport to the cell surface, and the egress of virions from infected cells. J Virol. 1982 Sep;43(3):1102–1112. doi: 10.1128/jvi.43.3.1102-1112.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Katsumoto T., Hirano A., Kurimura T., Takagi A. In situ electron microscopical observation of cells infected with herpes simplex virus. J Gen Virol. 1981 Feb;52(Pt 2):267–278. doi: 10.1099/0022-1317-52-2-267. [DOI] [PubMed] [Google Scholar]
  16. Krempien U., Jockusch B. M., Jungwirth C. Herpes simplex virus-induced cell surface protrusions. Intervirology. 1984;22(3):156–163. doi: 10.1159/000149545. [DOI] [PubMed] [Google Scholar]
  17. Leslie J., Rixon F. J., McLauchlan J. Overexpression of the herpes simplex virus type 1 tegument protein VP22 increases its incorporation into virus particles. Virology. 1996 Jun 1;220(1):60–68. doi: 10.1006/viro.1996.0286. [DOI] [PubMed] [Google Scholar]
  18. MORGAN C., ROSE H. M., HOLDEN M., JONES E. P. Electron microscopic observations on the development of herpes simplex virus. J Exp Med. 1959 Oct 1;110:643–656. doi: 10.1084/jem.110.4.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rixon F. J., Addison C., McLauchlan J. Assembly of enveloped tegument structures (L particles) can occur independently of virion maturation in herpes simplex virus type 1-infected cells. J Gen Virol. 1992 Feb;73(Pt 2):277–284. doi: 10.1099/0022-1317-73-2-277. [DOI] [PubMed] [Google Scholar]
  20. Schlehofer J. R., Habermehl K. O., Diefenthal W., Hampl H. Reduction of 51Cr-permeability of tissue culture cells by infection with herpes simplex virus type 1. Intervirology. 1979;11(3):158–166. doi: 10.1159/000149028. [DOI] [PubMed] [Google Scholar]
  21. Schlehofer J. R., Hampl H., Habermehl K. O. Differences in the morphology of herpes simplex virus infected cells: I. Comparative scanning and transmission electron microscopic studies on HSV-1 infected HEp-2 and chick embryo fibroblast cells. J Gen Virol. 1979 Aug;44(2):433–442. doi: 10.1099/0022-1317-44-2-433. [DOI] [PubMed] [Google Scholar]
  22. Smith J. D., De Harven E. Herpes simplex virus and human cytomegalovirus replication in WI-38 cells. I. Sequence of viral replication. J Virol. 1973 Oct;12(4):919–930. doi: 10.1128/jvi.12.4.919-930.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sodeik B., Ebersold M. W., Helenius A. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol. 1997 Mar 10;136(5):1007–1021. doi: 10.1083/jcb.136.5.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stephens M., Talary M. S., Pethig R., Burnett A. K., Mills K. I. The dielectrophoresis enrichment of CD34+ cells from peripheral blood stem cell harvests. Bone Marrow Transplant. 1996 Oct;18(4):777–782. [PubMed] [Google Scholar]
  25. Szilágyi J. F., Cunningham C. Identification and characterization of a novel non-infectious herpes simplex virus-related particle. J Gen Virol. 1991 Mar;72(Pt 3):661–668. doi: 10.1099/0022-1317-72-3-661. [DOI] [PubMed] [Google Scholar]
  26. Wang X. B., Huang Y., Gascoyne P. R., Becker F. F., Hölzel R., Pethig R. Changes in Friend murine erythroleukaemia cell membranes during induced differentiation determined by electrorotation. Biochim Biophys Acta. 1994 Aug 3;1193(2):330–344. doi: 10.1016/0005-2736(94)90170-8. [DOI] [PubMed] [Google Scholar]
  27. Zhou X. F., Markx G. H., Pethig R. Effect of biocide concentration on electrorotation spectra of yeast cells. Biochim Biophys Acta. 1996 May 22;1281(1):60–64. doi: 10.1016/0005-2736(96)00015-6. [DOI] [PubMed] [Google Scholar]
  28. van Genderen I. L., Brandimarti R., Torrisi M. R., Campadelli G., van Meer G. The phospholipid composition of extracellular herpes simplex virions differs from that of host cell nuclei. Virology. 1994 May 1;200(2):831–836. doi: 10.1006/viro.1994.1252. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES