Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jun;76(6):2887–2898. doi: 10.1016/S0006-3495(99)77444-8

The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions.

Y Ri 1, J A Ballesteros 1, C K Abrams 1, S Oh 1, V K Verselis 1, H Weinstein 1, T A Bargiello 1
PMCID: PMC1300261  PMID: 10354417

Abstract

We have explored the role of a proline residue located at position 87 in the second transmembrane segment (TM2) of gap junctions in the mechanism of voltage-dependent gating of connexin32 (Cx32). Substitution of this proline (denoted Cx32P87) with residues G, A, or V affects channel function in a progressive manner consistent with the expectation that a proline kink (PK) motif exists in the second transmembrane segment (TM2) of this connexin. Mutations of the preceding threonine residue T86 to S, A, C, V, N, or L shift the conductance-voltage relation of wild-type Cx32, such that the mutated channels close at smaller transjunctional voltages. The observed shift in voltage dependence is consistent with a reduction in the open probability of the mutant hemichannels at a transjunctional voltage (Vj) of 0 mV. In both cases in which kinetics were examined, the time constants for reaching steady state were faster for T86N and T86A than for wild type at comparable voltages, suggesting that the T86 mutations cause the energetic destabilization of the open state relative to the other states of the channel protein. The structural underpinnings of the observed effects were explored with Monte Carlo simulations. The conformational space of TM2 helices was found to differ for the T86A, V, N, and L mutants, which produce a less bent helix ( approximately 20 degrees bend angle) compared to the wild type, which has a approximately 37 degrees bend angle. The greater bend angle of the wild-type helix reflects the propensity of the T86 residue to hydrogen bond with the backbone carbonyl of amino acid residue I82. The relative differences in propensity for hydrogen bonding of the mutants relative to the wild-type threonine residue in the constructs we studied (T86A, V, N, L, S, and C) correlate with the shift in the conductance-voltage relation observed for T86 mutations. The data are consistent with a structural model in which the open conformation of the Cx32 channel corresponds to a more bent TM2 helix, and the closed conformation corresponds to a less bent helix. We propose that the modulation of the hydrogen-bonding potential of the T86 residue alters the bend angle of the PK motif and mediates conformational changes between open and closed channel states.

Full Text

The Full Text of this article is available as a PDF (881.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballesteros J. A., Weinstein H. Analysis and refinement of criteria for predicting the structure and relative orientations of transmembranal helical domains. Biophys J. 1992 Apr;62(1):107–109. doi: 10.1016/S0006-3495(92)81794-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barlow D. J., Thornton J. M. Helix geometry in proteins. J Mol Biol. 1988 Jun 5;201(3):601–619. doi: 10.1016/0022-2836(88)90641-9. [DOI] [PubMed] [Google Scholar]
  3. Barrio L. C., Suchyna T., Bargiello T., Xu L. X., Roginski R. S., Bennett M. V., Nicholson B. J. Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8410–8414. doi: 10.1073/pnas.88.19.8410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beblo D. A., Veenstra R. D. Monovalent cation permeation through the connexin40 gap junction channel. Cs, Rb, K, Na, Li, TEA, TMA, TBA, and effects of anions Br, Cl, F, acetate, aspartate, glutamate, and NO3. J Gen Physiol. 1997 Apr;109(4):509–522. doi: 10.1085/jgp.109.4.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bone L. J., Deschênes S. M., Balice-Gordon R. J., Fischbeck K. H., Scherer S. S. Connexin32 and X-linked Charcot-Marie-Tooth disease. Neurobiol Dis. 1997;4(3-4):221–230. doi: 10.1006/nbdi.1997.0152. [DOI] [PubMed] [Google Scholar]
  6. Caspar D. L., Goodenough D. A., Makowski L., Phillips W. C. Gap junction structures. I. Correlated electron microscopy and x-ray diffraction. J Cell Biol. 1977 Aug;74(2):605–628. doi: 10.1083/jcb.74.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gether U., Lin S., Ghanouni P., Ballesteros J. A., Weinstein H., Kobilka B. K. Agonists induce conformational changes in transmembrane domains III and VI of the beta2 adrenoceptor. EMBO J. 1997 Nov 17;16(22):6737–6747. doi: 10.1093/emboj/16.22.6737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gray T. M., Matthews B. W. Intrahelical hydrogen bonding of serine, threonine and cysteine residues within alpha-helices and its relevance to membrane-bound proteins. J Mol Biol. 1984 May 5;175(1):75–81. doi: 10.1016/0022-2836(84)90446-7. [DOI] [PubMed] [Google Scholar]
  9. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
  10. Kirkpatrick S., Gelatt C. D., Jr, Vecchi M. P. Optimization by simulated annealing. Science. 1983 May 13;220(4598):671–680. doi: 10.1126/science.220.4598.671. [DOI] [PubMed] [Google Scholar]
  11. Luo X., Zhang D., Weinstein H. Ligand-induced domain motion in the activation mechanism of a G-protein-coupled receptor. Protein Eng. 1994 Dec;7(12):1441–1448. doi: 10.1093/protein/7.12.1441. [DOI] [PubMed] [Google Scholar]
  12. Makowski L., Caspar D. L., Phillips W. C., Goodenough D. A. Gap junction structures. II. Analysis of the x-ray diffraction data. J Cell Biol. 1977 Aug;74(2):629–645. doi: 10.1083/jcb.74.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McGregor M. J., Islam S. A., Sternberg M. J. Analysis of the relationship between side-chain conformation and secondary structure in globular proteins. J Mol Biol. 1987 Nov 20;198(2):295–310. doi: 10.1016/0022-2836(87)90314-7. [DOI] [PubMed] [Google Scholar]
  14. Moreno A. P., Rook M. B., Fishman G. I., Spray D. C. Gap junction channels: distinct voltage-sensitive and -insensitive conductance states. Biophys J. 1994 Jul;67(1):113–119. doi: 10.1016/S0006-3495(94)80460-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oh S., Ri Y., Bennett M. V., Trexler E. B., Verselis V. K., Bargiello T. A. Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot-Marie-Tooth disease. Neuron. 1997 Oct;19(4):927–938. doi: 10.1016/s0896-6273(00)80973-3. [DOI] [PubMed] [Google Scholar]
  16. Pastore A., Harvey T. S., Dempsey C. E., Campbell I. D. The dynamic properties of melittin in solution. Investigations by NMR and molecular dynamics. Eur Biophys J. 1989;16(6):363–367. doi: 10.1007/BF00257885. [DOI] [PubMed] [Google Scholar]
  17. Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997 Sep 12;277(5332):1676–1681. doi: 10.1126/science.277.5332.1676. [DOI] [PubMed] [Google Scholar]
  18. Piela L., Némethy G., Scheraga H. A. Proline-induced constraints in alpha-helices. Biopolymers. 1987 Sep;26(9):1587–1600. doi: 10.1002/bip.360260910. [DOI] [PubMed] [Google Scholar]
  19. Rubin J. B., Verselis V. K., Bennett M. V., Bargiello T. A. Molecular analysis of voltage dependence of heterotypic gap junctions formed by connexins 26 and 32. Biophys J. 1992 Apr;62(1):183–195. doi: 10.1016/S0006-3495(92)81804-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sankararamakrishnan R., Vishveshwara S. Geometry of proline-containing alpha-helices in proteins. Int J Pept Protein Res. 1992 Apr;39(4):356–363. doi: 10.1111/j.1399-3011.1992.tb01595.x. [DOI] [PubMed] [Google Scholar]
  21. Sansom M. S. Proline residues in transmembrane helices of channel and transport proteins: a molecular modelling study. Protein Eng. 1992 Jan;5(1):53–60. doi: 10.1093/protein/5.1.53. [DOI] [PubMed] [Google Scholar]
  22. Shiels A., Mackay D., Ionides A., Berry V., Moore A., Bhattacharya S. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant "zonular pulverulent" cataract, on chromosome 1q. Am J Hum Genet. 1998 Mar;62(3):526–532. doi: 10.1086/301762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Suchyna T. M., Xu L. X., Gao F., Fourtner C. R., Nicholson B. J. Identification of a proline residue as a transduction element involved in voltage gating of gap junctions. Nature. 1993 Oct 28;365(6449):847–849. doi: 10.1038/365847a0. [DOI] [PubMed] [Google Scholar]
  24. Unger V. M., Kumar N. M., Gilula N. B., Yeager M. Projection structure of a gap junction membrane channel at 7 A resolution. Nat Struct Biol. 1997 Jan;4(1):39–43. doi: 10.1038/nsb0197-39. [DOI] [PubMed] [Google Scholar]
  25. Unger V. M., Kumar N. M., Gilula N. B., Yeager M. Three-dimensional structure of a recombinant gap junction membrane channel. Science. 1999 Feb 19;283(5405):1176–1180. doi: 10.1126/science.283.5405.1176. [DOI] [PubMed] [Google Scholar]
  26. Unwin P. N., Ennis P. D. Two configurations of a channel-forming membrane protein. Nature. 1984 Feb 16;307(5952):609–613. doi: 10.1038/307609a0. [DOI] [PubMed] [Google Scholar]
  27. Verselis V. K., Ginter C. S., Bargiello T. A. Opposite voltage gating polarities of two closely related connexins. Nature. 1994 Mar 24;368(6469):348–351. doi: 10.1038/368348a0. [DOI] [PubMed] [Google Scholar]
  28. Wang H. Z., Veenstra R. D. Monovalent ion selectivity sequences of the rat connexin43 gap junction channel. J Gen Physiol. 1997 Apr;109(4):491–507. doi: 10.1085/jgp.109.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. White T. W., Goodenough D. A., Paul D. L. Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol. 1998 Nov 2;143(3):815–825. doi: 10.1083/jcb.143.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Williams K. A., Deber C. M. Proline residues in transmembrane helices: structural or dynamic role? Biochemistry. 1991 Sep 17;30(37):8919–8923. doi: 10.1021/bi00101a001. [DOI] [PubMed] [Google Scholar]
  31. Woolfson D. N., Mortishire-Smith R. J., Williams D. H. Conserved positioning of proline residues in membrane-spanning helices of ion-channel proteins. Biochem Biophys Res Commun. 1991 Mar 29;175(3):733–737. doi: 10.1016/0006-291x(91)91627-o. [DOI] [PubMed] [Google Scholar]
  32. Woolfson D. N., Williams D. H. The influence of proline residues on alpha-helical structure. FEBS Lett. 1990 Dec 17;277(1-2):185–188. doi: 10.1016/0014-5793(90)80839-b. [DOI] [PubMed] [Google Scholar]
  33. Yeager M. Structure of cardiac gap junction intercellular channels. J Struct Biol. 1998;121(2):231–245. doi: 10.1006/jsbi.1998.3972. [DOI] [PubMed] [Google Scholar]
  34. Yun R. H., Anderson A., Hermans J. Proline in alpha-helix: stability and conformation studied by dynamics simulation. Proteins. 1991;10(3):219–228. doi: 10.1002/prot.340100306. [DOI] [PubMed] [Google Scholar]
  35. Zhou X. W., Pfahnl A., Werner R., Hudder A., Llanes A., Luebke A., Dahl G. Identification of a pore lining segment in gap junction hemichannels. Biophys J. 1997 May;72(5):1946–1953. doi: 10.1016/S0006-3495(97)78840-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES