Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jun;76(6):2912–2921. doi: 10.1016/S0006-3495(99)77446-1

Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly.

B Stec 1, R F Troxler 1, M M Teeter 1
PMCID: PMC1300263  PMID: 10354419

Abstract

The crystal structure of the light-harvesting protein phycocyanin from the cyanobacterium Cyanidium caldarium with novel crystal packing has been solved at 1.65-A resolution. The structure has been refined to an R value of 18.3% with excellent backbone and side-chain stereochemical parameters. In crystals of phycocyanin used in this study, the hexamers are offset rather than aligned as in other phycocyanins that have been crystallized to date. Analysis of this crystal's unique packing leads to a proposal for phycobilisome assembly in vivo and for a more prominent role for chromophore beta-155. This new role assigned to chromophore beta-155 in phycocyanin sheds light on the numerical relationships among and function of external chromophores found in phycoerythrins and phycoerythrocyanins.

Full Text

The Full Text of this article is available as a PDF (602.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Brejc K., Ficner R., Huber R., Steinbacher S. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 A resolution. J Mol Biol. 1995 Jun 2;249(2):424–440. doi: 10.1006/jmbi.1995.0307. [DOI] [PubMed] [Google Scholar]
  3. Dobler M., Dover S. D., Laves K., Binder A., Zuber H. Crystallization and preliminary crystal data of C-phycocyanin. J Mol Biol. 1972 Nov 28;71(3):785–787. doi: 10.1016/s0022-2836(72)80038-x. [DOI] [PubMed] [Google Scholar]
  4. Duerring M., Huber R., Bode W., Ruembeli R., Zuber H. Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 A. J Mol Biol. 1990 Feb 5;211(3):633–644. doi: 10.1016/0022-2836(90)90270-v. [DOI] [PubMed] [Google Scholar]
  5. Ficner R., Lobeck K., Schmidt G., Huber R. Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 A resolution. J Mol Biol. 1992 Dec 5;228(3):935–950. doi: 10.1016/0022-2836(92)90876-l. [DOI] [PubMed] [Google Scholar]
  6. Fisher R. G., Woods N. E., Fuchs H. E., Sweet R. M. Three-dimensional structures of C-phycocyanin and B-phycoerythrin at 5-A resolution. J Biol Chem. 1980 Jun 10;255(11):5082–5089. [PubMed] [Google Scholar]
  7. Glazer A. N. Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem. 1989 Jan 5;264(1):1–4. [PubMed] [Google Scholar]
  8. Glazer A. N. Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem. 1985;14:47–77. doi: 10.1146/annurev.bb.14.060185.000403. [DOI] [PubMed] [Google Scholar]
  9. Hackert M. L., Abad-Zapatero C., Stevens S. E., Jr, Fox J. L. Crystallization of C-phycocyanin from the marine blue-green alga Agmenellum quadruplicatum. J Mol Biol. 1977 Apr 15;111(3):365–369. doi: 10.1016/s0022-2836(77)80058-2. [DOI] [PubMed] [Google Scholar]
  10. Karshikov A., Duerring M., Huber R. Role of electrostatic interaction in the stability of the hexamer of constitutive phycocyanin from Fremyella diplosiphon. Protein Eng. 1991 Aug;4(6):681–690. doi: 10.1093/protein/4.6.681. [DOI] [PubMed] [Google Scholar]
  11. Klotz A. V., Leary J. A., Glazer A. N. Post-translational methylation of asparaginyl residues. Identification of beta-71 gamma-N-methylasparagine in allophycocyanin. J Biol Chem. 1986 Dec 5;261(34):15891–15894. [PubMed] [Google Scholar]
  12. Lundell D. J., Williams R. C., Glazer A. N. Molecular architecture of a light-harvesting antenna. In vitro assembly of the rod substructures of Synechococcus 6301 phycobilisomes. J Biol Chem. 1981 Apr 10;256(7):3580–3592. [PubMed] [Google Scholar]
  13. Offner G. D., Brown-Mason A. S., Ehrhardt M. M., Troxler R. F. Primary structure of phycocyanin from the unicellular rhodophyte Cyanidium caldarium. I. Complete amino acid sequence of the alpha subunit. J Biol Chem. 1981 Dec 10;256(23):12167–12175. [PubMed] [Google Scholar]
  14. Pastore A., Lesk A. M. Comparison of the structures of globins and phycocyanins: evidence for evolutionary relationship. Proteins. 1990;8(2):133–155. doi: 10.1002/prot.340080204. [DOI] [PubMed] [Google Scholar]
  15. Porter G., Tredwell C. J., Searle G. F., Barber J. Picosecond time-resolved energy transfer in Porphyridium cruentum. Part I. In the intact alga. Biochim Biophys Acta. 1978 Feb 9;501(2):232–245. doi: 10.1016/0005-2728(78)90029-4. [DOI] [PubMed] [Google Scholar]
  16. RAMACHANDRAN G. N., RAMAKRISHNAN C., SASISEKHARAN V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963 Jul;7:95–99. doi: 10.1016/s0022-2836(63)80023-6. [DOI] [PubMed] [Google Scholar]
  17. Schirmer T., Bode W., Huber R. Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 A resolution. A common principle of phycobilin-protein interaction. J Mol Biol. 1987 Aug 5;196(3):677–695. doi: 10.1016/0022-2836(87)90040-4. [DOI] [PubMed] [Google Scholar]
  18. Schirmer T., Bode W., Huber R., Sidler W., Zuber H. X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol. 1985 Jul 20;184(2):257–277. doi: 10.1016/0022-2836(85)90379-1. [DOI] [PubMed] [Google Scholar]
  19. Schirmer T., Huber R., Schneider M., Bode W., Miller M., Hackert M. L. Crystal structure analysis and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting. J Mol Biol. 1986 Apr 20;188(4):651–676. doi: 10.1016/s0022-2836(86)80013-4. [DOI] [PubMed] [Google Scholar]
  20. Swanson R. V., Glazer A. N. Phycobiliprotein methylation. Effect of the gamma-N-methylasparagine residue on energy transfer in phycocyanin and the phycobilisome. J Mol Biol. 1990 Aug 5;214(3):787–796. doi: 10.1016/0022-2836(90)90293-u. [DOI] [PubMed] [Google Scholar]
  21. Teale F. W., Dale R. E. Isolation and spectral characterization of phycobiliproteins. Biochem J. 1970 Jan;116(2):161–169. doi: 10.1042/bj1160161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Troxler R. F., Ehrhardt M. M., Brown-Mason A. S., Offner G. D. Primary structure of phycocyanin from the unicellular rhodophyte Cyanidium caldarium. II. Complete amino acid sequence of the beta subunit. J Biol Chem. 1981 Dec 10;256(23):12176–12184. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES