Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jun;76(6):2934–2942. doi: 10.1016/S0006-3495(99)77448-5

Competition between Li+ and Mg2+ in neuroblastoma SH-SY5Y cells: a fluorescence and 31P NMR study.

L Amari 1, B Layden 1, J Nikolakopoulos 1, Q Rong 1, D Mota de Freitas 1, G Baltazar 1, M M Castro 1, C F Geraldes 1
PMCID: PMC1300265  PMID: 10354421

Abstract

Because Mg2+ and Li+ ions have similar chemical properties, we have hypothesized that Li+/Mg2+ competition for Mg2+ binding sites is the molecular basis for the therapeutic action of lithium in manic-depressive illness. By fluorescence spectroscopy with furaptra-loaded cells, the free intracellular Mg2+ concentration within the intact neuroblastoma cells was found to increase from 0. 39 +/- 0.04 mM to 0.60 +/- 0.04 mM during a 40-min Li+ incubation in which the total intracellular Li+ concentration increased from 0 to 5.5 mM. Our fluorescence microscopy observations of Li+-free and Li+-loaded cells also indicate an increase in free Mg2+ concentration upon Li+ incubation. By 31P NMR, the free intracellular Mg2+ concentrations for Li+-free cells was 0.35 +/- 0. 03 mM and 0.80 +/- 0.04 mM for Li+-loaded cells (final total intracellular Li+ concentration of 16 mM). If a Li+/Mg2+ competition mechanism is present in neuroblastoma cells, an increase in the total intracellular Li+ concentration is expected to result in an increase in the free intracellular Mg2+ concentration, because Li+ displaces Mg2+ from its binding sites within the nerve cell. The fluorescence spectroscopy, fluorescence microscopy, and 31P NMR spectroscopy studies presented here have shown this to be the case.

Full Text

The Full Text of this article is available as a PDF (165.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraha A., de Freitas D. E., Margarida M., Castro C. A., Geraldes C. F. Competition between Li+ and Mg2+ for ATP and ADP in aqueous solution: a multinuclear NMR study. J Inorg Biochem. 1991 May 15;42(3):191–198. doi: 10.1016/0162-0134(91)84005-t. [DOI] [PubMed] [Google Scholar]
  2. Allison J. H., Stewart M. A. Reduced brain inositol in lithium-treated rats. Nat New Biol. 1971 Oct 27;233(43):267–268. doi: 10.1038/newbio233267a0. [DOI] [PubMed] [Google Scholar]
  3. Avissar S., Schreiber G., Danon A., Belmaker R. H. Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature. 1988 Feb 4;331(6155):440–442. doi: 10.1038/331440a0. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J., Downes C. P., Hanley M. R. Neural and developmental actions of lithium: a unifying hypothesis. Cell. 1989 Nov 3;59(3):411–419. doi: 10.1016/0092-8674(89)90026-3. [DOI] [PubMed] [Google Scholar]
  5. Biedler J. L., Helson L., Spengler B. A. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 1973 Nov;33(11):2643–2652. [PubMed] [Google Scholar]
  6. Carter B. D., Medzihradsky F. Go mediates the coupling of the mu opioid receptor to adenylyl cyclase in cloned neural cells and brain. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4062–4066. doi: 10.1073/pnas.90.9.4062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Connor M., Henderson G. delta- and mu-opioid receptor mobilization of intracellular calcium in SH-SY5Y human neuroblastoma cells. Br J Pharmacol. 1996 Jan;117(2):333–340. doi: 10.1111/j.1476-5381.1996.tb15195.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Di Virgilio F., Steinberg T. H., Silverstein S. C. Inhibition of Fura-2 sequestration and secretion with organic anion transport blockers. Cell Calcium. 1990 Feb-Mar;11(2-3):57–62. doi: 10.1016/0143-4160(90)90059-4. [DOI] [PubMed] [Google Scholar]
  9. Foxall D. L., Cohen J. S., Mitchell J. B. Continuous perfusion of mammalian cells embedded in agarose gel threads. Exp Cell Res. 1984 Oct;154(2):521–529. doi: 10.1016/0014-4827(84)90176-9. [DOI] [PubMed] [Google Scholar]
  10. Frausto da Silva J. J., Williams R. J. Possible mechanism for the biological action of lithium. Nature. 1976 Sep 16;263(5574):237–239. doi: 10.1038/263237a0. [DOI] [PubMed] [Google Scholar]
  11. Hurley T. W., Ryan M. P., Brinck R. W. Changes of cytosolic Ca2+ interfere with measurements of cytosolic Mg2+ using mag-fura-2. Am J Physiol. 1992 Aug;263(2 Pt 1):C300–C307. doi: 10.1152/ajpcell.1992.263.2.C300. [DOI] [PubMed] [Google Scholar]
  12. Iotti S., Frassineti C., Alderighi L., Sabatini A., Vacca A., Barbiroli B. In vivo assessment of free magnesium concentration in human brain by 31P MRS. A new calibration curve based on a mathematical algorithm. NMR Biomed. 1996 Feb;9(1):24–32. doi: 10.1002/(SICI)1099-1492(199602)9:1<24::AID-NBM392>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  13. Klinz F. J., Yu V. C., Sadée W., Costa T. Differential expression of alpha-subunits of G-proteins in human neuroblastoma-derived cell clones. FEBS Lett. 1987 Nov 16;224(1):43–48. doi: 10.1016/0014-5793(87)80419-2. [DOI] [PubMed] [Google Scholar]
  14. Komoroski R. A., Pearce J. M., Newton J. E. The distribution of lithium in rat brain and muscle in vivo by 7Li NMR imaging. Magn Reson Med. 1997 Aug;38(2):275–278. doi: 10.1002/mrm.1910380217. [DOI] [PubMed] [Google Scholar]
  15. Lam H. R., Christensen S. Regional and subcellular localization of Li+ and other cations in the rat brain following long-term lithium administration. J Neurochem. 1992 Oct;59(4):1372–1380. doi: 10.1111/j.1471-4159.1992.tb08450.x. [DOI] [PubMed] [Google Scholar]
  16. McDonald R. L., Vaughan P. F., Peers C. Muscarinic (M1) receptor-mediated inhibition of K(+)-evoked [3H]-noradrenaline release from human neuroblastoma (SH-SY5Y) cells via inhibition of L- and N-type Ca2+ channels. Br J Pharmacol. 1994 Oct;113(2):621–627. doi: 10.1111/j.1476-5381.1994.tb17035.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mota de Freitas D., Amari L., Srinivasan C., Rong Q., Ramasamy R., Abraha A., Geraldes C. F., Boyd M. K. Competition between Li+ and Mg2+ for the phosphate groups in the human erythrocyte membrane and ATP: an NMR and fluorescence study. Biochemistry. 1994 Apr 12;33(14):4101–4110. doi: 10.1021/bi00180a002. [DOI] [PubMed] [Google Scholar]
  18. Murphy E. Measurement of intracellular ionized magnesium. Miner Electrolyte Metab. 1993;19(4-5):250–258. [PubMed] [Google Scholar]
  19. Nakagawa-Yagi Y. Induction of apoptotic cell death in differentiating neuroblastoma SH-SY5Y cells by colchicine. Biochem Biophys Res Commun. 1994 Mar 15;199(2):807–817. doi: 10.1006/bbrc.1994.1301. [DOI] [PubMed] [Google Scholar]
  20. Nikolakopoulos J., Zachariah C., Mota de Freitas D., Stubbs E. B., Jr, Ramasamy R., Castro M. C., Geraldes C. F. 7Li nuclear magnetic resonance study for the determination of Li+ properties in neuroblastoma SH-SY5Y cells. J Neurochem. 1998 Oct;71(4):1676–1684. doi: 10.1046/j.1471-4159.1998.71041676.x. [DOI] [PubMed] [Google Scholar]
  21. Patterson M. K., Jr Measurement of growth and viability of cells in culture. Methods Enzymol. 1979;58:141–152. doi: 10.1016/s0076-6879(79)58132-4. [DOI] [PubMed] [Google Scholar]
  22. Raju B., Murphy E., Levy L. A., Hall R. D., London R. E. A fluorescent indicator for measuring cytosolic free magnesium. Am J Physiol. 1989 Mar;256(3 Pt 1):C540–C548. doi: 10.1152/ajpcell.1989.256.3.C540. [DOI] [PubMed] [Google Scholar]
  23. Ramasamy R., de Freitas D. M. Competition between Li+ and Mg2+ for ATP in human erythrocytes. A 31P NMR and optical spectroscopy study. FEBS Lett. 1989 Feb 13;244(1):223–226. doi: 10.1016/0014-5793(89)81197-4. [DOI] [PubMed] [Google Scholar]
  24. Stubbs E. B., Jr, Agranoff B. W. Lithium enhances muscarinic receptor-stimulated CDP-diacylglycerol formation in inositol-depleted SK-N-SH neuroblastoma cells. J Neurochem. 1993 Apr;60(4):1292–1299. doi: 10.1111/j.1471-4159.1993.tb03289.x. [DOI] [PubMed] [Google Scholar]
  25. Szwergold B. S. NMR spectroscopy of cells. Annu Rev Physiol. 1992;54:775–798. doi: 10.1146/annurev.ph.54.030192.004015. [DOI] [PubMed] [Google Scholar]
  26. Tan C. H., Javors M. A., Seleshi E., Lowrimore P. A., Bowden C. L. Effects of lithium on platelet ionic intracellular calcium concentration in patients with bipolar (manic-depressive) disorder and healthy controls. Life Sci. 1990;46(16):1175–1180. doi: 10.1016/0024-3205(90)90454-y. [DOI] [PubMed] [Google Scholar]
  27. Willars G. B., Nahorski S. R. Heterologous desensitization of both phosphoinositide and Ca2+ signaling in SH-SY5Y neuroblastoma cells: a role for intracellular Ca2+ store depletion? Mol Pharmacol. 1995 Mar;47(3):509–516. [PubMed] [Google Scholar]
  28. Willars G. B., Nahorski S. R. Quantitative comparisons of muscarinic and bradykinin receptor-mediated Ins (1,4,5)P3 accumulation and Ca2+ signalling in human neuroblastoma cells. Br J Pharmacol. 1995 Mar;114(6):1133–1142. doi: 10.1111/j.1476-5381.1995.tb13325.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES