Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jun;76(6):3026–3030. doi: 10.1016/S0006-3495(99)77455-2

Biological effects due to weak electric and magnetic fields: the temperature variation threshold.

J C Weaver 1, T E Vaughan 1, G T Martin 1
PMCID: PMC1300272  PMID: 10354428

Abstract

A large number of epidemiological and experimental studies suggest that prolonged (>100 s) weak 50-60-Hz electric and magnetic field (EMF) exposures may cause biological effects(NIEHS Working Group, NIH, 1998; Bersani, 1999). We show, however, that for typical temperature sensitivities of biochemical processes, realistic temperature variations during long exposures raise the threshold exposure by two to three orders of magnitude over a fundamental value, independent of the biophysical coupling mechanism. Temperature variations have been omitted in previous theoretical analyses of possible weak field effects, particularly stochastic resonance (Bezrukov and Vodyanoy 1997a. Nature. 385:319-321; Astumian et al., 1997 Nature. 338:632-633; Bezrukov and Vodyanoy, 1997b. Nature. 338:663; Dykman and McClintock, 1998. Nature. 391:344; McClintock, 1998;. Gammaitoni et al., 1998. Rev. Mod. Phys. 70:223-287). Although sensory systems usually respond to much shorter (approximately 1 s) exposures and can approach fundamental limits (Bialek, 1987 Annu. Rev. Biophys. Biophys. Chem. 16:455-468; Adair et al, 1998. Chaos. 8:576-587), our results significantly decrease the plausibility of effects for nonsensory biological systems due to prolonged, weak-field exposures.

Full Text

The Full Text of this article is available as a PDF (112.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair Robert K., Astumian R. Dean, Weaver James C. Detection of weak electric fields by sharks, rays, and skates. Chaos. 1998 Sep;8(3):576–587. doi: 10.1063/1.166339. [DOI] [PubMed] [Google Scholar]
  2. Astumian R. D., Adair R. K., Weaver J. C. Stochastic resonance at the single-cell level. Nature. 1997 Aug 14;388(6643):632–633. doi: 10.1038/41684. [DOI] [PubMed] [Google Scholar]
  3. Astumian R. D., Weaver J. C., Adair R. K. Rectification and signal averaging of weak electric fields by biological cells. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3740–3743. doi: 10.1073/pnas.92.9.3740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bezrukov S. M., Vodyanoy I. Stochastic resonance in non-dynamical systems without response thresholds. Nature. 1997 Jan 23;385(6614):319–321. doi: 10.1038/385319a0. [DOI] [PubMed] [Google Scholar]
  5. Bialek W. Physical limits to sensation and perception. Annu Rev Biophys Biophys Chem. 1987;16:455–478. doi: 10.1146/annurev.bb.16.060187.002323. [DOI] [PubMed] [Google Scholar]
  6. Graziana A., Ranjeva R., Teissié J. External electric fields stimulate the electrogenic calcium/sodium exchange in plant protoplasts. Biochemistry. 1990 Sep 11;29(36):8313–8318. doi: 10.1021/bi00488a016. [DOI] [PubMed] [Google Scholar]
  7. Hammel H. T. Regulation of internal body temperature. Annu Rev Physiol. 1968;30:641–710. doi: 10.1146/annurev.ph.30.030168.003233. [DOI] [PubMed] [Google Scholar]
  8. Keatinge W. R., Mason A. C., Millard C. E., Newstead C. G. Effects of fluctuating skin temperature on thermoregulatory responses in man. J Physiol. 1986 Sep;378:241–252. doi: 10.1113/jphysiol.1986.sp016217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Loetscher P., Uguccioni M., Bordoli L., Baggiolini M., Moser B., Chizzolini C., Dayer J. M. CCR5 is characteristic of Th1 lymphocytes. Nature. 1998 Jan 22;391(6665):344–345. doi: 10.1038/34814. [DOI] [PubMed] [Google Scholar]
  10. McLeod K. J., Lee R. C., Ehrlich H. P. Frequency dependence of electric field modulation of fibroblast protein synthesis. Science. 1987 Jun 12;236(4807):1465–1469. doi: 10.1126/science.3589667. [DOI] [PubMed] [Google Scholar]
  11. Rubin S. A. Core temperature regulation of heart rate during exercise in humans. J Appl Physiol (1985) 1987 May;62(5):1997–2002. doi: 10.1152/jappl.1987.62.5.1997. [DOI] [PubMed] [Google Scholar]
  12. Serpersu E. H., Tsong T. Y. Stimulation of a ouabain-sensitive Rb+ uptake in human erthrocytes with an external electric field. J Membr Biol. 1983;74(3):191–201. doi: 10.1007/BF02332123. [DOI] [PubMed] [Google Scholar]
  13. Shiraki K., Sagawa S., Tajima F., Yokota A., Hashimoto M., Brengelmann G. L. Independence of brain and tympanic temperatures in an unanesthetized human. J Appl Physiol (1985) 1988 Jul;65(1):482–486. doi: 10.1152/jappl.1988.65.1.482. [DOI] [PubMed] [Google Scholar]
  14. Valberg P. A., Kavet R., Rafferty C. N. Can low-level 50/60 Hz electric and magnetic fields cause biological effects? Radiat Res. 1997 Jul;148(1):2–21. [PubMed] [Google Scholar]
  15. Weaver J. C., Astumian R. D. The response of living cells to very weak electric fields: the thermal noise limit. Science. 1990 Jan 26;247(4941):459–462. doi: 10.1126/science.2300806. [DOI] [PubMed] [Google Scholar]
  16. Weaver J. C., Vaughan T. E., Adair R. K., Astumian R. D. Theoretical limits on the threshold for the response of long cells to weak extremely low frequency electric fields due to ionic and molecular flux rectification. Biophys J. 1998 Nov;75(5):2251–2254. doi: 10.1016/S0006-3495(98)77669-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Webb P. Temperatures of skin, subcutaneous tissue, muscle and core in resting men in cold, comfortable and hot conditions. Eur J Appl Physiol Occup Physiol. 1992;64(5):471–476. doi: 10.1007/BF00625070. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES