Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jun;76(6):3076–3088. doi: 10.1016/S0006-3495(99)77460-6

Measurement of calcium channel inactivation is dependent upon the test pulse potential.

S Gera 1, L Byerly 1
PMCID: PMC1300277  PMID: 10354433

Abstract

We have developed two methods to measure Ca2+ channel inactivation in Lymnaea neurons-one method, based upon the conventional double-pulse protocol, uses currents during a moderately large depolarizing pulse, and the other uses tail currents after a very strong activating pulse. Both methods avoid contamination by proton currents and are unaffected by rundown of Ca2+ current. The magnitude of inactivation measured differs for the two methods; this difference arises because the measurement of inactivation is inherently dependent upon the test pulse voltage used to monitor the Ca2+ channel conductance. We discuss two models that can generate such test pulse dependence of inactivation measurements-a two-channel model and a two-open-state model. The first model accounts for this by assuming the existence of two types of Ca2+ channels, different proportions of which are activated by the different test pulses. The second model assumes only one Ca2+ channel type, with two closed and open states; in this model, the test pulse dependence is due to the differential activation of channels in the two closed states by the test pulses. Test pulse dependence of inactivation measurements of Ca2+ channels may be a general phenomenon that has been overlooked in previous studies.

Full Text

The Full Text of this article is available as a PDF (170.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike N., Lee K. S., Brown A. M. The calcium current of Helix neuron. J Gen Physiol. 1978 May;71(5):509–531. doi: 10.1085/jgp.71.5.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bean B. P. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature. 1989 Jul 13;340(6229):153–156. doi: 10.1038/340153a0. [DOI] [PubMed] [Google Scholar]
  3. Byerly L., Hagiwara S. Calcium currents in internally perfused nerve cell bodies of Limnea stagnalis. J Physiol. 1982 Jan;322:503–528. doi: 10.1113/jphysiol.1982.sp014052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Byerly L., Meech R., Moody W., Jr Rapidly activating hydrogen ion currents in perfused neurones of the snail, Lymnaea stagnalis. J Physiol. 1984 Jun;351:199–216. doi: 10.1113/jphysiol.1984.sp015241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eckert R., Tillotson D. L. Calcium-mediated inactivation of the calcium conductance in caesium-loaded giant neurones of Aplysia californica. J Physiol. 1981 May;314:265–280. doi: 10.1113/jphysiol.1981.sp013706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fleig A., Penner R. Silent calcium channels generate excessive tail currents and facilitation of calcium currents in rat skeletal myoballs. J Physiol. 1996 Jul 1;494(Pt 1):141–153. doi: 10.1113/jphysiol.1996.sp021481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hagiwara S., Ohmori H. Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp. J Physiol. 1982 Oct;331:231–252. doi: 10.1113/jphysiol.1982.sp014371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haydon P. G., Man-Son-Hing H. Low- and high-voltage-activated calcium currents: their relationship to the site of neurotransmitter release in an identified neuron of Helisoma. Neuron. 1988 Dec;1(10):919–927. doi: 10.1016/0896-6273(88)90149-3. [DOI] [PubMed] [Google Scholar]
  9. Isom L. L., De Jongh K. S., Catterall W. A. Auxiliary subunits of voltage-gated ion channels. Neuron. 1994 Jun;12(6):1183–1194. doi: 10.1016/0896-6273(94)90436-7. [DOI] [PubMed] [Google Scholar]
  10. Johnson B. D., Byerly L. Ca2+ channel Ca(2+)-dependent inactivation in a mammalian central neuron involves the cytoskeleton. Pflugers Arch. 1994 Nov;429(1):14–21. doi: 10.1007/BF02584025. [DOI] [PubMed] [Google Scholar]
  11. Johnson B. D., Byerly L. Photo-released intracellular Ca2+ rapidly blocks Ba2+ current in Lymnaea neurons. J Physiol. 1993 Mar;462:321–347. doi: 10.1113/jphysiol.1993.sp019558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jones S. W., Marks T. N. Calcium currents in bullfrog sympathetic neurons. II. Inactivation. J Gen Physiol. 1989 Jul;94(1):169–182. doi: 10.1085/jgp.94.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McFarlane M. B. Depolarization-induced slowing of Ca2+ channel deactivation in squid neurons. Biophys J. 1997 Apr;72(4):1607–1621. doi: 10.1016/S0006-3495(97)78807-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Olcese R., Qin N., Schneider T., Neely A., Wei X., Stefani E., Birnbaumer L. The amino terminus of a calcium channel beta subunit sets rates of channel inactivation independently of the subunit's effect on activation. Neuron. 1994 Dec;13(6):1433–1438. doi: 10.1016/0896-6273(94)90428-6. [DOI] [PubMed] [Google Scholar]
  15. Patil P. G., Brody D. L., Yue D. T. Preferential closed-state inactivation of neuronal calcium channels. Neuron. 1998 May;20(5):1027–1038. doi: 10.1016/s0896-6273(00)80483-3. [DOI] [PubMed] [Google Scholar]
  16. Schuhmann K., Romanin C., Baumgartner W., Groschner K. Intracellular Ca2+ inhibits smooth muscle L-type Ca2+ channels by activation of protein phosphatase type 2B and by direct interaction with the channel. J Gen Physiol. 1997 Nov;110(5):503–513. doi: 10.1085/jgp.110.5.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sculptoreanu A., Scheuer T., Catterall W. A. Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature. 1993 Jul 15;364(6434):240–243. doi: 10.1038/364240a0. [DOI] [PubMed] [Google Scholar]
  18. Thomas R. C., Meech R. W. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature. 1982 Oct 28;299(5886):826–828. doi: 10.1038/299826a0. [DOI] [PubMed] [Google Scholar]
  19. Tillotson D. Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1497–1500. doi: 10.1073/pnas.76.3.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES