Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jun;76(6):3118–3127. doi: 10.1016/S0006-3495(99)77463-1

Membrane-pipette interactions underlie delayed voltage activation of mechanosensitive channels in Xenopus oocytes.

Z Gil 1, K L Magleby 1, S D Silberberg 1
PMCID: PMC1300280  PMID: 10354436

Abstract

To investigate the mechanism for the delayed activation by voltage of the predominant mechanosensitive (MS) channel in Xenopus oocytes, currents were recorded from on-cell and excised patches of membrane with the patch clamp technique and from intact oocytes with the two-electrode voltage clamp technique. MS channels could be activated by stretch in inside-out, on-cell, and outside-out patch configurations, using pipettes formed of either borosilicate or soft glass. In inside-out patches formed with borosilicate glass pipettes, depolarizing voltage steps activated MS channels in a cooperative manner after delays of seconds. This voltage-dependent activation was not observed for outside-out patches. Voltage-dependent activation was also not observed when the borosilicate pipettes were either replaced with soft glass pipettes or coated with soft glass. When depolarizing voltage steps were applied to the whole oocyte with a two-electrode voltage clamp, currents that could be attributed to MS channels were not observed. Yet the same depolarizing steps activated MS channels in on-cell patches formed with borosilicate pipettes on the same oocyte. These observations suggest that the delayed cooperative activation of MS channels by depolarization is not an intrinsic property of the channels, but requires interaction between the membrane and patch pipette.

Full Text

The Full Text of this article is available as a PDF (103.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akinlaja J., Sachs F. The breakdown of cell membranes by electrical and mechanical stress. Biophys J. 1998 Jul;75(1):247–254. doi: 10.1016/S0006-3495(98)77511-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arellano R. O., Woodward R. M., Miledi R. A monovalent cationic conductance that is blocked by extracellular divalent cations in Xenopus oocytes. J Physiol. 1995 May 1;484(Pt 3):593–604. doi: 10.1113/jphysiol.1995.sp020689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Copello J., Simon B., Segal Y., Wehner F., Ramanujam V. M., Alcock N., Reuss L. Ba2+ release from soda glass modifies single maxi K+ channel activity in patch clamp experiments. Biophys J. 1991 Oct;60(4):931–941. doi: 10.1016/S0006-3495(91)82127-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cota G., Armstrong C. M. Potassium channel "inactivation" induced by soft-glass patch pipettes. Biophys J. 1988 Jan;53(1):107–109. doi: 10.1016/S0006-3495(88)83071-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ebihara L. Xenopus connexin38 forms hemi-gap-junctional channels in the nonjunctional plasma membrane of Xenopus oocytes. Biophys J. 1996 Aug;71(2):742–748. doi: 10.1016/S0006-3495(96)79273-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Furman R. E., Tanaka J. C. Patch electrode glass composition affects ion channel currents. Biophys J. 1988 Feb;53(2):287–292. doi: 10.1016/S0006-3495(88)83091-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gustin M. C., Zhou X. L., Martinac B., Kung C. A mechanosensitive ion channel in the yeast plasma membrane. Science. 1988 Nov 4;242(4879):762–765. doi: 10.1126/science.2460920. [DOI] [PubMed] [Google Scholar]
  8. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  9. Hamill O. P., McBride D. W., Jr Induced membrane hypo/hyper-mechanosensitivity: a limitation of patch-clamp recording. Annu Rev Physiol. 1997;59:621–631. doi: 10.1146/annurev.physiol.59.1.621. [DOI] [PubMed] [Google Scholar]
  10. Hamill O. P., McBride D. W., Jr Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7462–7466. doi: 10.1073/pnas.89.16.7462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamill O. P., McBride D. W., Jr The pharmacology of mechanogated membrane ion channels. Pharmacol Rev. 1996 Jun;48(2):231–252. [PubMed] [Google Scholar]
  12. McBride D. W., Jr, Hamill O. P. Pressure-clamp technique for measurement of the relaxation kinetics of mechanosensitive channels. Trends Neurosci. 1993 Sep;16(9):341–345. doi: 10.1016/0166-2236(93)90089-5. [DOI] [PubMed] [Google Scholar]
  13. Methfessel C., Witzemann V., Takahashi T., Mishina M., Numa S., Sakmann B. Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflugers Arch. 1986 Dec;407(6):577–588. doi: 10.1007/BF00582635. [DOI] [PubMed] [Google Scholar]
  14. Morris C. E. Mechanosensitive ion channels. J Membr Biol. 1990 Feb;113(2):93–107. doi: 10.1007/BF01872883. [DOI] [PubMed] [Google Scholar]
  15. Mosbacher J., Langer M., Hörber J. K., Sachs F. Voltage-dependent membrane displacements measured by atomic force microscopy. J Gen Physiol. 1998 Jan;111(1):65–74. doi: 10.1085/jgp.111.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Opsahl L. R., Webb W. W. Lipid-glass adhesion in giga-sealed patch-clamped membranes. Biophys J. 1994 Jan;66(1):75–79. doi: 10.1016/S0006-3495(94)80752-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Petrov A. G., Miller B. A., Hristova K., Usherwood P. N. Flexoelectric effects in model and native membranes containing ion channels. Eur Biophys J. 1993;22(4):289–300. doi: 10.1007/BF00180263. [DOI] [PubMed] [Google Scholar]
  18. Rae J. L., Levis R. A. Glass technology for patch clamp electrodes. Methods Enzymol. 1992;207:66–92. doi: 10.1016/0076-6879(92)07005-9. [DOI] [PubMed] [Google Scholar]
  19. Sackin H. Mechanosensitive channels. Annu Rev Physiol. 1995;57:333–353. doi: 10.1146/annurev.ph.57.030195.002001. [DOI] [PubMed] [Google Scholar]
  20. Schütt W., Sackin H. A new technique for evaluating volume sensitivity of ion channels. Pflugers Arch. 1997 Jan;433(3):368–375. doi: 10.1007/s004240050290. [DOI] [PubMed] [Google Scholar]
  21. Silberberg S. D., Magleby K. L. Voltage-induced slow activation and deactivation of mechanosensitive channels in Xenopus oocytes. J Physiol. 1997 Dec 15;505(Pt 3):551–569. doi: 10.1111/j.1469-7793.1997.551ba.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sokabe M., Sachs F., Jing Z. Q. Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J. 1991 Mar;59(3):722–728. doi: 10.1016/S0006-3495(91)82285-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sokabe M., Sachs F. The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy. J Cell Biol. 1990 Aug;111(2):599–606. doi: 10.1083/jcb.111.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sukharev S. I., Blount P., Martinac B., Kung C. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu Rev Physiol. 1997;59:633–657. doi: 10.1146/annurev.physiol.59.1.633. [DOI] [PubMed] [Google Scholar]
  25. Wilkinson N. C., Gao F., Hamill O. P. Effects of mechano-gated cation channel blockers on Xenopus oocyte growth and development. J Membr Biol. 1998 Sep 15;165(2):161–174. doi: 10.1007/s002329900430. [DOI] [PubMed] [Google Scholar]
  26. Yang X. C., Sachs F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science. 1989 Feb 24;243(4894 Pt 1):1068–1071. doi: 10.1126/science.2466333. [DOI] [PubMed] [Google Scholar]
  27. Yang X. C., Sachs F. Characterization of stretch-activated ion channels in Xenopus oocytes. J Physiol. 1990 Dec;431:103–122. doi: 10.1113/jphysiol.1990.sp018322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhang Y., McBride D. W., Jr, Hamill O. P. The ion selectivity of a membrane conductance inactivated by extracellular calcium in Xenopus oocytes. J Physiol. 1998 May 1;508(Pt 3):763–776. doi: 10.1111/j.1469-7793.1998.763bp.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES