Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jun;76(6):3128–3140. doi: 10.1016/S0006-3495(99)77464-3

Effects of outer mouth mutations on hERG channel function: a comparison with similar mutations in the Shaker channel.

J S Fan 1, M Jiang 1, W Dun 1, T V McDonald 1, G N Tseng 1
PMCID: PMC1300281  PMID: 10354437

Abstract

The fast-inactivation process in the hERG channel can be affected by mutations in the pore or S6 domain, similar to the C-type inactivation in the Shaker channel. However, differences in the kinetics and voltage dependence of inactivation between these two channels suggest that different structural determinants may be involved. To explore this possibility, we mutated a serine in the outer mouth region of hERG (S631) to residues of different physicochemical properties and compared the resulting changes in the channel's inactivation process with those resulting from mutations of an equivalent position in the Shaker channel (T449). The most dramatic differences are seen when this position is occupied by a charged residue: S631K and S631E disrupted C-type inactivation in hERG, whereas T449K and T449E facilitate C-type inactivation in Shaker. S631K and S631E also disrupted the K selectivity of hERG pore, a change not seen in T449K or T449E of Shaker. To further study why there are such differences, we replaced S631 with cysteine. This allowed us to manipulate the properties of thiol groups at position 631 and correlate side-chain properties here with changes in channel function. S631C behaved like the wild-type channel when the thiol groups were in the reduced state. Oxidizing thiol groups with H2O2 or modifying them with MTSET or MTSES disrupted C-type inactivation and K selectivity, similar to the phenotype of S631K and S631E. The same thiol-modifying maneuvers did not affect the wild-type channel function. Our results suggest differences in the outer mouth structure between hERG and Shaker, and we propose a "molecular spring" hypothesis to explain these differences.

Full Text

The Full Text of this article is available as a PDF (249.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baukrowitz T., Yellen G. Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron. 1995 Oct;15(4):951–960. doi: 10.1016/0896-6273(95)90185-x. [DOI] [PubMed] [Google Scholar]
  2. Cha A., Bezanilla F. Structural implications of fluorescence quenching in the Shaker K+ channel. J Gen Physiol. 1998 Oct;112(4):391–408. doi: 10.1085/jgp.112.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Choi K. L., Aldrich R. W., Yellen G. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5092–5095. doi: 10.1073/pnas.88.12.5092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  5. Durell S. R., Guy H. R. Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel. Neuropharmacology. 1996;35(7):761–773. doi: 10.1016/0028-3908(96)00097-4. [DOI] [PubMed] [Google Scholar]
  6. Ficker E., Jarolimek W., Kiehn J., Baumann A., Brown A. M. Molecular determinants of dofetilide block of HERG K+ channels. Circ Res. 1998 Feb 23;82(3):386–395. doi: 10.1161/01.res.82.3.386. [DOI] [PubMed] [Google Scholar]
  7. Hancox J. C., Levi A. J., Witchel H. J. Time course and voltage dependence of expressed HERG current compared with native "rapid" delayed rectifier K current during the cardiac ventricular action potential. Pflugers Arch. 1998 Nov;436(6):843–853. doi: 10.1007/s004240050713. [DOI] [PubMed] [Google Scholar]
  8. Heginbotham L., Lu Z., Abramson T., MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J. 1994 Apr;66(4):1061–1067. doi: 10.1016/S0006-3495(94)80887-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heginbotham L., MacKinnon R. The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron. 1992 Mar;8(3):483–491. doi: 10.1016/0896-6273(92)90276-j. [DOI] [PubMed] [Google Scholar]
  10. Herzberg I. M., Trudeau M. C., Robertson G. A. Transfer of rapid inactivation and sensitivity to the class III antiarrhythmic drug E-4031 from HERG to M-eag channels. J Physiol. 1998 Aug 15;511(Pt 1):3–14. doi: 10.1111/j.1469-7793.1998.003bi.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holmgren M., Shin K. S., Yellen G. The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge. Neuron. 1998 Sep;21(3):617–621. doi: 10.1016/s0896-6273(00)80571-1. [DOI] [PubMed] [Google Scholar]
  12. Hoshi T., Zagotta W. N., Aldrich R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron. 1991 Oct;7(4):547–556. doi: 10.1016/0896-6273(91)90367-9. [DOI] [PubMed] [Google Scholar]
  13. Kiss L., Immke D., LoTurco J., Korn S. J. The interaction of Na+ and K+ in voltage-gated potassium channels. Evidence for cation binding sites of different affinity. J Gen Physiol. 1998 Feb;111(2):195–206. doi: 10.1085/jgp.111.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kiss L., Korn S. J. Modulation of C-type inactivation by K+ at the potassium channel selectivity filter. Biophys J. 1998 Apr;74(4):1840–1849. doi: 10.1016/S0006-3495(98)77894-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kiss L., LoTurco J., Korn S. J. Contribution of the selectivity filter to inactivation in potassium channels. Biophys J. 1999 Jan;76(1 Pt 1):253–263. doi: 10.1016/S0006-3495(99)77194-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Larsson H. P., Baker O. S., Dhillon D. S., Isacoff E. Y. Transmembrane movement of the shaker K+ channel S4. Neuron. 1996 Feb;16(2):387–397. doi: 10.1016/s0896-6273(00)80056-2. [DOI] [PubMed] [Google Scholar]
  17. Liu Y., Jurman M. E., Yellen G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron. 1996 Apr;16(4):859–867. doi: 10.1016/s0896-6273(00)80106-3. [DOI] [PubMed] [Google Scholar]
  18. Loots E., Isacoff E. Y. Protein rearrangements underlying slow inactivation of the Shaker K+ channel. J Gen Physiol. 1998 Oct;112(4):377–389. doi: 10.1085/jgp.112.4.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. López-Barneo J., Hoshi T., Heinemann S. H., Aldrich R. W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels. 1993;1(1):61–71. [PubMed] [Google Scholar]
  20. Molina A., Castellano A. G., López-Barneo J. Pore mutations in Shaker K+ channels distinguish between the sites of tetraethylammonium blockade and C-type inactivation. J Physiol. 1997 Mar 1;499(Pt 2):361–367. doi: 10.1113/jphysiol.1997.sp021933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ogielska E. M., Zagotta W. N., Hoshi T., Heinemann S. H., Haab J., Aldrich R. W. Cooperative subunit interactions in C-type inactivation of K channels. Biophys J. 1995 Dec;69(6):2449–2457. doi: 10.1016/S0006-3495(95)80114-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Panyi G., Sheng Z., Deutsch C. C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophys J. 1995 Sep;69(3):896–903. doi: 10.1016/S0006-3495(95)79963-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rasmusson R. L., Morales M. J., Wang S., Liu S., Campbell D. L., Brahmajothi M. V., Strauss H. C. Inactivation of voltage-gated cardiac K+ channels. Circ Res. 1998 Apr 20;82(7):739–750. doi: 10.1161/01.res.82.7.739. [DOI] [PubMed] [Google Scholar]
  24. Roden D. M., Lazzara R., Rosen M., Schwartz P. J., Towbin J., Vincent G. M. Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS. Circulation. 1996 Oct 15;94(8):1996–2012. doi: 10.1161/01.cir.94.8.1996. [DOI] [PubMed] [Google Scholar]
  25. Sanguinetti M. C., Jiang C., Curran M. E., Keating M. T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell. 1995 Apr 21;81(2):299–307. doi: 10.1016/0092-8674(95)90340-2. [DOI] [PubMed] [Google Scholar]
  26. Schreibmayer W., Lester H. A., Dascal N. Voltage clamping of Xenopus laevis oocytes utilizing agarose-cushion electrodes. Pflugers Arch. 1994 Mar;426(5):453–458. doi: 10.1007/BF00388310. [DOI] [PubMed] [Google Scholar]
  27. Schönherr R., Heinemann S. H. Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J Physiol. 1996 Jun 15;493(Pt 3):635–642. doi: 10.1113/jphysiol.1996.sp021410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shieh C. C., Klemic K. G., Kirsch G. E. Role of transmembrane segment S5 on gating of voltage-dependent K+ channels. J Gen Physiol. 1997 Jun;109(6):767–778. doi: 10.1085/jgp.109.6.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smith P. L., Baukrowitz T., Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature. 1996 Feb 29;379(6568):833–836. doi: 10.1038/379833a0. [DOI] [PubMed] [Google Scholar]
  30. Spector P. S., Curran M. E., Zou A., Keating M. T., Sanguinetti M. C. Fast inactivation causes rectification of the IKr channel. J Gen Physiol. 1996 May;107(5):611–619. doi: 10.1085/jgp.107.5.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Starkus J. G., Kuschel L., Rayner M. D., Heinemann S. H. Ion conduction through C-type inactivated Shaker channels. J Gen Physiol. 1997 Nov;110(5):539–550. doi: 10.1085/jgp.110.5.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Trudeau M. C., Warmke J. W., Ganetzky B., Robertson G. A. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science. 1995 Jul 7;269(5220):92–95. doi: 10.1126/science.7604285. [DOI] [PubMed] [Google Scholar]
  33. Wang S., Liu S., Morales M. J., Strauss H. C., Rasmusson R. L. A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes. J Physiol. 1997 Jul 1;502(Pt 1):45–60. doi: 10.1111/j.1469-7793.1997.045bl.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang S., Morales M. J., Liu S., Strauss H. C., Rasmusson R. L. Time, voltage and ionic concentration dependence of rectification of h-erg expressed in Xenopus oocytes. FEBS Lett. 1996 Jul 1;389(2):167–173. doi: 10.1016/0014-5793(96)00570-4. [DOI] [PubMed] [Google Scholar]
  35. Yang Y., Yan Y., Sigworth F. J. How does the W434F mutation block current in Shaker potassium channels? J Gen Physiol. 1997 Jun;109(6):779–789. doi: 10.1085/jgp.109.6.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yellen G., Sodickson D., Chen T. Y., Jurman M. E. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys J. 1994 Apr;66(4):1068–1075. doi: 10.1016/S0006-3495(94)80888-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhou Z., Gong Q., Ye B., Fan Z., Makielski J. C., Robertson G. A., January C. T. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J. 1998 Jan;74(1):230–241. doi: 10.1016/S0006-3495(98)77782-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zou A., Xu Q. P., Sanguinetti M. C. A mutation in the pore region of HERG K+ channels expressed in Xenopus oocytes reduces rectification by shifting the voltage dependence of inactivation. J Physiol. 1998 May 15;509(Pt 1):129–137. doi: 10.1111/j.1469-7793.1998.129bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES