Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jun;76(6):3278–3288. doi: 10.1016/S0006-3495(99)77480-1

Ultrafast primary processes in photosystem I of the cyanobacterium Synechocystis sp. PCC 6803.

S Savikhin 1, W Xu 1, V Soukoulis 1, P R Chitnis 1, W S Struve 1
PMCID: PMC1300297  PMID: 10354453

Abstract

Ultrafast primary processes in the trimeric photosystem I core antenna-reaction center complex of the cyanobacterium Synechocystis sp. PCC 6803 have been examined in pump-probe experiments with approximately 100 fs resolution. A global analysis of two-color profiles, excited at 660 nm and probed at 5 nm intervals from 650 to 730 nm, reveals 430 fs kinetics for spectral equilibration among bulk antenna chlorophylls. At least two lifetime components (2.0 and 6.5 ps in our analysis) are required to describe equilibration of bulk chlorophylls with far red-absorbing chlorophylls (>700 nm). Trapping at P700 occurs with 24-ps kinetics. The multiphasic bulk left arrow over right arrow red equilibration kinetics are intriguing, because prior steady-state spectral studies have suggested that the core antenna in Synechocystis sp. contains only one red-absorbing chlorophyll species (C708). The disperse kinetics may arise from inhomogeneous broadening in C708. The one-color optical anisotropy at 680 nm (near the red edge of the bulk antenna) decays with 590 fs kinetics; the corresponding anisotropy at 710 nm shows approximately 3.1 ps kinetics. The latter may signal equilibration among symmetry-equivalent red chlorophylls, bound to different monomers within trimeric photosystem I.

Full Text

The Full Text of this article is available as a PDF (198.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buck D. R., Savikhin S., Struve W. S. Ultrafast absorption difference spectra of the Fenna-Matthews-Olson protein at 19 K: experiment and simulations. Biophys J. 1997 Jan;72(1):24–36. doi: 10.1016/S0006-3495(97)78644-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hastings G., Hoshina S., Webber A. N., Blankenship R. E. Universality of energy and electron transfer processes in photosystem I. Biochemistry. 1995 Nov 28;34(47):15512–15522. doi: 10.1021/bi00047a017. [DOI] [PubMed] [Google Scholar]
  3. Hecks B., Wulf K., Breton J., Leibl W., Trissl H. W. Primary charge separation in photosystem I: a two-step electrogenic charge separation connected with P700+A0- and P700+A1- formation. Biochemistry. 1994 Jul 26;33(29):8619–8624. doi: 10.1021/bi00195a001. [DOI] [PubMed] [Google Scholar]
  4. Holzwarth A. R., Schatz G., Brock H., Bittersmann E. Energy transfer and charge separation kinetics in photosystem I: Part 1: Picosecond transient absorption and fluorescence study of cyanobacterial photosystem I particles. Biophys J. 1993 Jun;64(6):1813–1826. doi: 10.1016/S0006-3495(93)81552-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jia Y., Jean J. M., Werst M. M., Chan C. K., Fleming G. R. Simulations of the temperature dependence of energy transfer in the PSI core antenna. Biophys J. 1992 Jul;63(1):259–273. doi: 10.1016/S0006-3495(92)81589-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Karapetyan N. V., Dorra D., Schweitzer G., Bezsmertnaya I. N., Holzwarth A. R. Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric photosystem I core complexes from the cyanobacterium Spirulina platensis. Biochemistry. 1997 Nov 11;36(45):13830–13837. doi: 10.1021/bi970386z. [DOI] [PubMed] [Google Scholar]
  7. Krauss N., Schubert W. D., Klukas O., Fromme P., Witt H. T., Saenger W. Photosystem I at 4 A resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Biol. 1996 Nov;3(11):965–973. doi: 10.1038/nsb1196-965. [DOI] [PubMed] [Google Scholar]
  8. Lin S., Struve W. S. Time-resolved fluorescence of nitrobenzoxadiazole-aminohexanoic acid: effect of intermolecular hydrogen-bonding on non-radiative decay. Photochem Photobiol. 1991 Sep;54(3):361–365. doi: 10.1111/j.1751-1097.1991.tb02028.x. [DOI] [PubMed] [Google Scholar]
  9. Owens T. G., Webb S. P., Alberte R. S., Mets L., Fleming G. R. Antenna structure and excitation dynamics in photosystem I. I. Studies of detergent-isolated photosystem I preparations using time-resolved fluorescence analysis. Biophys J. 1988 May;53(5):733–745. doi: 10.1016/S0006-3495(88)83154-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Savikhin S., van Noort P. I., Zhu Y., Lin S., Blankenship R. E., Struve W. S. Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum. Chem Phys. 1995 May 15;194(2-3):245–258. doi: 10.1016/0301-0104(95)00019-k. [DOI] [PubMed] [Google Scholar]
  11. Shubin V. V., Bezsmertnaya I. N., Karapetyan N. V. Isolation from Spirulina membranes of two photosystem I-type complexes, one of which contains chlorophyll responsible for the 77 K fluorescence band at 760 nm. FEBS Lett. 1992 Sep 14;309(3):340–342. doi: 10.1016/0014-5793(92)80803-o. [DOI] [PubMed] [Google Scholar]
  12. Sun J., Ke A., Jin P., Chitnis V. P., Chitnis P. R. Isolation and functional study of photosystem I subunits in the cyanobacterium Synechocystis sp. PCC 6803. Methods Enzymol. 1998;297:124–139. doi: 10.1016/s0076-6879(98)97010-0. [DOI] [PubMed] [Google Scholar]
  13. Trinkunas G., Holzwarth A. R. Kinetic modeling of exciton migration in photosynthetic systems. 2. Simulations of excitation dynamics in two-dimensional photosystem I core antenna/reaction center complexes. Biophys J. 1994 Feb;66(2 Pt 1):415–429. doi: 10.1016/s0006-3495(94)80792-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Werst M., Jia Y., Mets L., Fleming G. R. Energy transfer and trapping in the photosystem I core antenna. A temperature study. Biophys J. 1992 Apr;61(4):868–878. doi: 10.1016/S0006-3495(92)81894-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES