Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jun;76(6):3307–3314. doi: 10.1016/S0006-3495(99)77483-7

Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion.

J Yang 1, Y Huang 1, X Wang 1, X B Wang 1, F F Becker 1, P R Gascoyne 1
PMCID: PMC1300300  PMID: 10354456

Abstract

The separation and purification of human blood cell subpopulations is an essential step in many biomedical applications. New dielectrophoretic fractionation methods have great potential for cell discrimination and manipulation, both for microscale diagnostic applications and for much larger scale clinical problems. To discover whether human leukocyte subpopulations might be separable by such methods, the dielectric characteristics of the four main leukocyte subpopulations, namely, B- and T-lymphocytes, monocytes, and granulocytes, were measured by electrorotation over the frequency range 1 kHz to 120 MHz. The subpopulations were derived from human peripheral blood by magnetically activated cell sorting (MACS) and sheep erythrocyte rosetting methods, and the quality of cell fractions was checked by flow cytometry. Mean specific membrane capacitance values were calculated from the electrorotation data as 10.5 (+/- 3.1), 12.6 (+/- 3.5), 15.3 (+/- 4.3), and 11.0 (+/- 3.2) mF/m2 for T- and B-lymphocytes, monocytes, and granulocytes, respectively, according to a single-shell dielectric model. In agreement with earlier findings, these values correlated with the richness of the surface morphologies of the different cell types, as revealed by scanning electron microscopy (SEM). The data reveal that dielectrophoretic cell sorters should have the ability to discriminate between, and to separate, leukocyte subpopulations under appropriate conditions.

Full Text

The Full Text of this article is available as a PDF (366.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballario C., Bonincontro A., Cametti C., Rosi A., Sportelli L. Effect of extracellular alkali metal salts on the electric parameters of human erythrocytes in normal and pathological conditions (homozygous beta-thalassemia). Z Naturforsch C. 1984 Nov-Dec;39(11-12):1163–1169. doi: 10.1515/znc-1984-11-1230. [DOI] [PubMed] [Google Scholar]
  2. Becker F. F., Wang X. B., Huang Y., Pethig R., Vykoukal J., Gascoyne P. R. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):860–864. doi: 10.1073/pnas.92.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bentwich Z., Douglas S. D., Siegal F. P., Kunkel H. G. Human lymphocyte-sheep erythrocyte rosette formation: some characteristics of the interaction. Clin Immunol Immunopathol. 1973 Jul;1(4):511–522. doi: 10.1016/0090-1229(73)90007-x. [DOI] [PubMed] [Google Scholar]
  4. Beving H., Eriksson L. E., Davey C. L., Kell D. B. Dielectric properties of human blood and erythrocytes at radio frequencies (0.2-10 MHz); dependence on cell volume fraction and medium composition. Eur Biophys J. 1994;23(3):207–215. doi: 10.1007/BF01007612. [DOI] [PubMed] [Google Scholar]
  5. Bordi F., Cametti C., Rosi A., Calcabrini A. Frequency domain electrical conductivity measurements of the passive electrical properties of human lymphocytes. Biochim Biophys Acta. 1993 Nov 21;1153(1):77–88. doi: 10.1016/0005-2736(93)90278-8. [DOI] [PubMed] [Google Scholar]
  6. Boyum A. Separation of blood leucocytes, granulocytes and lymphocytes. Tissue Antigens. 1974;4(4):269–274. [PubMed] [Google Scholar]
  7. Gimsa J., Marszalek P., Loewe U., Tsong T. Y. Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells. Biophys J. 1991 Oct;60(4):749–760. doi: 10.1016/S0006-3495(91)82109-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huang Y., Hölzel R., Pethig R., Wang X. B. Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol. 1992 Jul;37(7):1499–1517. doi: 10.1088/0031-9155/37/7/003. [DOI] [PubMed] [Google Scholar]
  9. Huang Y., Wang X. B., Becker F. F., Gascoyne P. R. Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys J. 1997 Aug;73(2):1118–1129. doi: 10.1016/S0006-3495(97)78144-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hölzel R., Lamprecht I. Dielectric properties of yeast cells as determined by electrorotation. Biochim Biophys Acta. 1992 Feb 17;1104(1):195–200. doi: 10.1016/0005-2736(92)90150-k. [DOI] [PubMed] [Google Scholar]
  11. Jondal M., Holm G., Wigzell H. Surface markers on human T and B lymphocytes. I. A large population of lymphocytes forming nonimmune rosettes with sheep red blood cells. J Exp Med. 1972 Aug 1;136(2):207–215. doi: 10.1084/jem.136.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kurnick J. T., Ostberg L., Stegagno M., Kimura A. K., Orn A., Sjöberg O. A rapid method for the separation of functional lymphoid cell populations of human and animal origin on PVP-silica (Percoll) density gradients. Scand J Immunol. 1979;10(6):563–573. doi: 10.1111/j.1365-3083.1979.tb01391.x. [DOI] [PubMed] [Google Scholar]
  13. Markx G. H., Talary M. S., Pethig R. Separation of viable and non-viable yeast using dielectrophoresis. J Biotechnol. 1994 Jan 15;32(1):29–37. doi: 10.1016/0168-1656(94)90117-1. [DOI] [PubMed] [Google Scholar]
  14. Polliack A., Fu S. M., Douglas S. D., Bentwich Z., Lampen N., De Harven E. Scanning electron microscopy of human lymphocyte-sheep erythrocyte rosettes. J Exp Med. 1974 Jul 1;140(1):146–158. doi: 10.1084/jem.140.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schwan H. P. Electrical properties of blood and its constituents: alternating current spectroscopy. Blut. 1983 Apr;46(4):185–197. doi: 10.1007/BF00320638. [DOI] [PubMed] [Google Scholar]
  16. Smeland E. B., Funderud S., Kvalheim G., Gaudernack G., Rasmussen A. M., Rusten L., Wang M. Y., Tindle R. W., Blomhoff H. K., Egeland T. Isolation and characterization of human hematopoietic progenitor cells: an effective method for positive selection of CD34+ cells. Leukemia. 1992 Aug;6(8):845–852. [PubMed] [Google Scholar]
  17. Stout R. D. Macrophage activation by T cells: cognate and non-cognate signals. Curr Opin Immunol. 1993 Jun;5(3):398–403. doi: 10.1016/0952-7915(93)90059-2. [DOI] [PubMed] [Google Scholar]
  18. Surowiec A., Stuchly S. S., Izaguirre C. Dielectric properties of human B and T lymphocytes at frequencies from 20 kHz to 100 MHz. Phys Med Biol. 1986 Jan;31(1):43–53. doi: 10.1088/0031-9155/31/1/004. [DOI] [PubMed] [Google Scholar]
  19. Wang X. B., Huang Y., Gascoyne P. R., Becker F. F., Hölzel R., Pethig R. Changes in Friend murine erythroleukaemia cell membranes during induced differentiation determined by electrorotation. Biochim Biophys Acta. 1994 Aug 3;1193(2):330–344. doi: 10.1016/0005-2736(94)90170-8. [DOI] [PubMed] [Google Scholar]
  20. Wang X. B., Hughes M. P., Huang Y., Becker F. F., Gascoyne P. R. Non-uniform spatial distributions of both the magnitude and phase of AC electric fields determine dielectrophoretic forces. Biochim Biophys Acta. 1995 Feb 23;1243(2):185–194. doi: 10.1016/0304-4165(94)00146-o. [DOI] [PubMed] [Google Scholar]
  21. Ziervogel H., Glaser R., Schadow D., Heymann S. Electrorotation of lymphocytes--the influence of membrane events and nucleus. Biosci Rep. 1986 Nov;6(11):973–982. doi: 10.1007/BF01114974. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES