Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jul;77(1):154–172. doi: 10.1016/S0006-3495(99)76879-7

Kinetic analysis of high affinity forms of interleukin (IL)-13 receptors: suppression of IL-13 binding by IL-2 receptor gamma chain.

V A Kuznetsov 1, R K Puri 1
PMCID: PMC1300319  PMID: 10388747

Abstract

Interleukin-13 (IL-13) is a pleiotropic cytokine that controls growth, differentiation, and apoptosis of immune and tumor cells. To understand the mechanisms of interaction between IL-13 and IL-13 receptors (IL-13R), and the role of the IL-2 receptor common gamma chain (gammac) in IL-13 binding and processing, we have examined IL-13 binding kinetics, dissociation/shedding, and internalization in renal cell carcinoma (RCC) cell lines. We observed a new phenomena in that the apparent rate of association, but not the dissociation, was strongly related to IL-13 concentration. We also observed cooperativity phenomena in IL-13 and IL-13R interaction in control RCC (MLneo) cells, but not in cells transfected with gammac chain (MLgammac). The number of IL-13 binding sites, the effective rate of ligand association, and the dissociation rate constants were reduced in gammac-transfected cells compared to control RCC cells. Two forms of IL-13R were detected in these cell lines, which differed in the kinetics of endocytosis and dissociation/exocytosis. Only a small fraction of bound receptors (14-24%) was rapidly internalized and the same fraction of the ligand-receptor complexes was shed and/or dissociated. The expression of gammac chain did not change any of these processes. A two independent high-affinity and moderate-affinity receptor model fit the kinetic observations in gammac-transfected cells. However, in control cells, the binding kinetics were more complicated. A mathematical model that fit a set of kinetic and steady state data in control cells was selected from a set of possible models. This best-fit model predicts that 1) two different IL-13R are expressed on the cell membrane, 2) a minor fraction of IL-13R exist as microclusters (homodimers and/or heterodimers) without exogenous IL-13, 3) high morphological complexity of the gammac-negative control cell membrane affects the cooperativity phenomena of IL-13 binding, and 4) a large number of co-receptor molecules is present, which helps keep the ligand on the cell surface for a long period of time after fast IL-13 binding and provides a negative control for ligand binding via production of the high affinity inhibitor bound to IL-13. Our data demonstrate that gammac exerts dramatic changes in the kinetic mechanisms of IL-13 binding.

Full Text

The Full Text of this article is available as a PDF (226.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajzer Z., Myers A. C., Vuk-Pavlović S. Binding, internalization, and intracellular processing of proteins interacting with recycling receptors. A kinetic analysis. J Biol Chem. 1989 Aug 15;264(23):13623–13631. [PubMed] [Google Scholar]
  2. Berg H. C., Purcell E. M. Physics of chemoreception. Biophys J. 1977 Nov;20(2):193–219. doi: 10.1016/S0006-3495(77)85544-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caput D., Laurent P., Kaghad M., Lelias J. M., Lefort S., Vita N., Ferrara P. Cloning and characterization of a specific interleukin (IL)-13 binding protein structurally related to the IL-5 receptor alpha chain. J Biol Chem. 1996 Jul 12;271(28):16921–16926. doi: 10.1074/jbc.271.28.16921. [DOI] [PubMed] [Google Scholar]
  4. Chang D. Z., Wu Z., Ciardelli T. L. A point mutation in interleukin-2 that alters ligand internalization. J Biol Chem. 1996 Jun 7;271(23):13349–13355. doi: 10.1074/jbc.271.23.13349. [DOI] [PubMed] [Google Scholar]
  5. Chaouchi N., Wallon C., Goujard C., Tertian G., Rudent A., Caput D., Ferrera P., Minty A., Vazquez A., Delfraissy J. F. Interleukin-13 inhibits interleukin-2-induced proliferation and protects chronic lymphocytic leukemia B cells from in vitro apoptosis. Blood. 1996 Feb 1;87(3):1022–1029. [PubMed] [Google Scholar]
  6. Debinski W., Obiri N. I., Pastan I., Puri R. K. A novel chimeric protein composed of interleukin 13 and Pseudomonas exotoxin is highly cytotoxic to human carcinoma cells expressing receptors for interleukin 13 and interleukin 4. J Biol Chem. 1995 Jul 14;270(28):16775–16780. doi: 10.1074/jbc.270.28.16775. [DOI] [PubMed] [Google Scholar]
  7. Donaldson D. D., Whitters M. J., Fitz L. J., Neben T. Y., Finnerty H., Henderson S. L., O'Hara R. M., Jr, Beier D. R., Turner K. J., Wood C. R. The murine IL-13 receptor alpha 2: molecular cloning, characterization, and comparison with murine IL-13 receptor alpha 1. J Immunol. 1998 Sep 1;161(5):2317–2324. [PubMed] [Google Scholar]
  8. Erickson J., Goldstein B., Holowka D., Baird B. The effect of receptor density on the forward rate constant for binding of ligands to cell surface receptors. Biophys J. 1987 Oct;52(4):657–662. doi: 10.1016/S0006-3495(87)83258-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Franco R., Casadó V., Ciruela F., Mallol J., Lluis C., Canela E. I. The cluster-arranged cooperative model: a model that accounts for the kinetics of binding to A1 adenosine receptors. Biochemistry. 1996 Mar 5;35(9):3007–3015. doi: 10.1021/bi952415g. [DOI] [PubMed] [Google Scholar]
  10. Gex-Fabry M., DeLisi C. Receptor-mediated endocytosis: a model and its implications for experimental analysis. Am J Physiol. 1984 Nov;247(5 Pt 2):R768–R779. doi: 10.1152/ajpregu.1984.247.5.R768. [DOI] [PubMed] [Google Scholar]
  11. Goldstein B., Dembo M. Approximating the effects of diffusion on reversible reactions at the cell surface: ligand-receptor kinetics. Biophys J. 1995 Apr;68(4):1222–1230. doi: 10.1016/S0006-3495(95)80298-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldstein B., Jones D., Kevrekidis I. G., Perelson A. S. Evidence for p55-p75 heterodimers in the absence of IL-2 from Scatchard plot analysis. Int Immunol. 1992 Jan;4(1):23–32. doi: 10.1093/intimm/4.1.23. [DOI] [PubMed] [Google Scholar]
  13. Goldstein B., Posner R. G., Torney D. C., Erickson J., Holowka D., Baird B. Competition between solution and cell surface receptors for ligand. Dissociation of hapten bound to surface antibody in the presence of solution antibody. Biophys J. 1989 Nov;56(5):955–966. doi: 10.1016/S0006-3495(89)82741-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Graber P., Gretener D., Herren S., Aubry J. P., Elson G., Poudrier J., Lecoanet-Henchoz S., Alouani S., Losberger C., Bonnefoy J. Y. The distribution of IL-13 receptor alpha1 expression on B cells, T cells and monocytes and its regulation by IL-13 and IL-4. Eur J Immunol. 1998 Dec;28(12):4286–4298. doi: 10.1002/(SICI)1521-4141(199812)28:12<4286::AID-IMMU4286>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  15. Keough K. M., Hyam P., Pink D. A., Quinn B. Cell surfaces and fractal dimensions. J Microsc. 1991 Jul;163(Pt 1):95–99. doi: 10.1111/j.1365-2818.1991.tb03163.x. [DOI] [PubMed] [Google Scholar]
  16. Kuznetsov V. A. Computer analysis of receptor-mediated endocytosis and exocytosis mechanisms: two pathways for the processing of TCR-CD3 receptor complexes of T lymphocytes. Biomed Sci. 1990;1(6):631–638. [PubMed] [Google Scholar]
  17. Kuznetsov V. A., Zhivoglyadov V. P., Stepanova L. A. Kinetic approach and estimation of the parameters of cellular interaction between the immunity system and a tumor. Arch Immunol Ther Exp (Warsz) 1993;41(1):21–31. [PubMed] [Google Scholar]
  18. Matsuoka M., Takeshita T., Ishii N., Nakamura M., Ohkubo T., Sugamura K. Kinetic study of interleukin-2 binding on the reconstituted interleukin-2 receptor complexes including the human gamma chain. Eur J Immunol. 1993 Oct;23(10):2472–2476. doi: 10.1002/eji.1830231014. [DOI] [PubMed] [Google Scholar]
  19. McKenzie A. N., Culpepper J. A., de Waal Malefyt R., Brière F., Punnonen J., Aversa G., Sato A., Dang W., Cocks B. G., Menon S. Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3735–3739. doi: 10.1073/pnas.90.8.3735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Minty A., Chalon P., Derocq J. M., Dumont X., Guillemot J. C., Kaghad M., Labit C., Leplatois P., Liauzun P., Miloux B. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature. 1993 Mar 18;362(6417):248–250. doi: 10.1038/362248a0. [DOI] [PubMed] [Google Scholar]
  21. Murata T., Obiri N. I., Debinski W., Puri R. K. Structure of IL-13 receptor: analysis of subunit composition in cancer and immune cells. Biochem Biophys Res Commun. 1997 Sep 8;238(1):90–94. doi: 10.1006/bbrc.1997.7248. [DOI] [PubMed] [Google Scholar]
  22. Nonnenmacher T. F., Baumann G., Barth A., Losa G. A. Digital image analysis of self-similar cell profiles. Int J Biomed Comput. 1994 Oct;37(2):131–138. doi: 10.1016/0020-7101(94)90135-x. [DOI] [PubMed] [Google Scholar]
  23. Obiri N. I., Debinski W., Leonard W. J., Puri R. K. Receptor for interleukin 13. Interaction with interleukin 4 by a mechanism that does not involve the common gamma chain shared by receptors for interleukins 2, 4, 7, 9, and 15. J Biol Chem. 1995 Apr 14;270(15):8797–8804. doi: 10.1074/jbc.270.15.8797. [DOI] [PubMed] [Google Scholar]
  24. Obiri N. I., Hillman G. G., Haas G. P., Sud S., Puri R. K. Expression of high affinity interleukin-4 receptors on human renal cell carcinoma cells and inhibition of tumor cell growth in vitro by interleukin-4. J Clin Invest. 1993 Jan;91(1):88–93. doi: 10.1172/JCI116205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Obiri N. I., Husain S. R., Debinski W., Puri R. K. Interleukin 13 inhibits growth of human renal cell carcinoma cells independently of the p140 interleukin 4 receptor chain. Clin Cancer Res. 1996 Oct;2(10):1743–1749. [PubMed] [Google Scholar]
  26. Obiri N. I., Leland P., Murata T., Debinski W., Puri R. K. The IL-13 receptor structure differs on various cell types and may share more than one component with IL-4 receptor. J Immunol. 1997 Jan 15;158(2):756–764. [PubMed] [Google Scholar]
  27. Obiri N. I., Murata T., Debinski W., Puri R. K. Modulation of interleukin (IL)-13 binding and signaling by the gammac chain of the IL-2 receptor. J Biol Chem. 1997 Aug 8;272(32):20251–20258. doi: 10.1074/jbc.272.32.20251. [DOI] [PubMed] [Google Scholar]
  28. Obiri N. I., Puri R. K. Characterization of interleukin-4 receptors expressed on human renal cell carcinoma cells. Oncol Res. 1994;6(9):419–427. [PubMed] [Google Scholar]
  29. Park L. S., Friend D., Sassenfeld H. M., Urdal D. L. Characterization of the human B cell stimulatory factor 1 receptor. J Exp Med. 1987 Aug 1;166(2):476–488. doi: 10.1084/jem.166.2.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Posner R. G., Lee B., Conrad D. H., Holowka D., Baird B., Goldstein B. Aggregation of IgE-receptor complexes on rat basophilic leukemia cells does not change the intrinsic affinity but can alter the kinetics of the ligand-IgE interaction. Biochemistry. 1992 Jun 16;31(23):5350–5356. doi: 10.1021/bi00138a015. [DOI] [PubMed] [Google Scholar]
  31. Puri R. K., Leland P., Obiri N. I., Husain S. R., Kreitman R. J., Haas G. P., Pastan I., Debinski W. Targeting of interleukin-13 receptor on human renal cell carcinoma cells by a recombinant chimeric protein composed of interleukin-13 and a truncated form of Pseudomonas exotoxin A (PE38QQR). Blood. 1996 May 15;87(10):4333–4339. [PubMed] [Google Scholar]
  32. Puri R. K., Leland P., Obiri N. I., Husain S. R., Mule J., Pastan I., Kreitman R. J. An improved circularly permuted interleukin 4-toxin is highly cytotoxic to human renal cell carcinoma cells. Introduction of gamma c chain in RCC cells does not improve sensitivity. Cell Immunol. 1996 Jul 10;171(1):80–86. doi: 10.1006/cimm.1996.0176. [DOI] [PubMed] [Google Scholar]
  33. Rovati G. E., Shrager R., Nicosia S., Munson P. J. KINFIT II: a nonlinear least-squares program for analysis of kinetic binding data. Mol Pharmacol. 1996 Jul;50(1):86–95. [PubMed] [Google Scholar]
  34. Sadana A., Beelaram A. M. Antigen-antibody diffusion-limited binding kinetics for biosensors. A fractal analysis. Appl Biochem Biotechnol. 1996 Jun;59(3):259–282. doi: 10.1007/BF02783569. [DOI] [PubMed] [Google Scholar]
  35. Sadana A., Ram A. B. Antigen-antibody binding kinetics for biosensors. Changes in the fractal dimension (surface roughness) and in the binding rate coefficient. Appl Biochem Biotechnol. 1996 Aug;60(2):123–138. doi: 10.1007/BF02788067. [DOI] [PubMed] [Google Scholar]
  36. Wofsy C., Goldstein B., Lund K., Wiley H. S. Implications of epidermal growth factor (EGF) induced egf receptor aggregation. Biophys J. 1992 Jul;63(1):98–110. doi: 10.1016/S0006-3495(92)81572-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhang J. G., Hilton D. J., Willson T. A., McFarlane C., Roberts B. A., Moritz R. L., Simpson R. J., Alexander W. S., Metcalf D., Nicola N. A. Identification, purification, and characterization of a soluble interleukin (IL)-13-binding protein. Evidence that it is distinct from the cloned Il-13 receptor and Il-4 receptor alpha-chains. J Biol Chem. 1997 Apr 4;272(14):9474–9480. doi: 10.1074/jbc.272.14.9474. [DOI] [PubMed] [Google Scholar]
  38. Zurawski G., de Vries J. E. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today. 1994 Jan;15(1):19–26. doi: 10.1016/0167-5699(94)90021-3. [DOI] [PubMed] [Google Scholar]
  39. de Waal Malefyt R., Figdor C. G., Huijbens R., Mohan-Peterson S., Bennett B., Culpepper J., Dang W., Zurawski G., de Vries J. E. Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by IFN-gamma or IL-10. J Immunol. 1993 Dec 1;151(11):6370–6381. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES