Abstract
Tonic and use-dependent block by tetrodotoxin (TTX) has been studied in cRNA-injected Xenopus oocytes expressing mutants W386Y, E945Q, D1426K, and D1717Q, of the outer-pore region of the rat brain IIA alpha-subunit of sodium channels. The various phenotypes are tonically half-blocked at TTX concentrations, IC50(t), that span a range of more than three orders of magnitude, from 4 nM in mutant D1426K to 11 microM in mutant D1717Q. When stimulated with repetitive depolarizing pulses at saturating frequencies, all channels showed a monoexponential increase in their TTX-binding affinity with time constants that span an equally wide range of values ([TTX] approximately IC50(t), from approximately 60 s for D1426K to approximately 30 ms for D1717Q) and are in most phenotypes roughly inversely proportional to IC50(t). In contrast, all phenotypes show the same approximately threefold increase in their TTX affinity under stimulation. The invariance of the free-energy difference between tonic and phasic configurations of the toxin-receptor complex, together with the extreme variability of phasic block kinetics, is fully consistent with the trapped-ion mechanism of use dependence suggested by and developed by. Using this model, we estimated for each phenotype both the second-order association rate constant, kon, and the first-order dissociation rate constant, koff, for TTX binding. Except for mutant E945Q, all phenotypes have roughly the same value of kon approximately 2 microM-1 s-1 and owe their large differences in IC50(t) to different koff values. However, a 60-fold reduction in kon is the main determinant of the low TTX sensitivity of mutant E945Q. This suggests that the carboxyl group of E945 occupies a much more external position in the pore vestibule than that of the homologous residue D1717.
Full Text
The Full Text of this article is available as a PDF (161.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baer M., Best P. M., Reuter H. Voltage-dependent action of tetrodotoxin in mammalian cardiac muscle. Nature. 1976 Sep 23;263(5575):344–345. doi: 10.1038/263344a0. [DOI] [PubMed] [Google Scholar]
- Butterworth J. F., 4th, Strichartz G. R. Molecular mechanisms of local anesthesia: a review. Anesthesiology. 1990 Apr;72(4):711–734. doi: 10.1097/00000542-199004000-00022. [DOI] [PubMed] [Google Scholar]
- Carmeliet E. Voltage-dependent block by tetrodotoxin of the sodium channel in rabbit cardiac Purkinje fibers. Biophys J. 1987 Jan;51(1):109–114. doi: 10.1016/S0006-3495(87)83315-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen C. J., Bean B. P., Colatsky T. J., Tsien R. W. Tetrodotoxin block of sodium channels in rabbit Purkinje fibers. Interactions between toxin binding and channel gating. J Gen Physiol. 1981 Oct;78(4):383–411. doi: 10.1085/jgp.78.4.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conti F., Gheri A., Pusch M., Moran O. Use dependence of tetrodotoxin block of sodium channels: a revival of the trapped-ion mechanism. Biophys J. 1996 Sep;71(3):1295–1312. doi: 10.1016/S0006-3495(96)79330-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dudley S. C., Jr, Todt H., Lipkind G., Fozzard H. A. A mu-conotoxin-insensitive Na+ channel mutant: possible localization of a binding site at the outer vestibule. Biophys J. 1995 Nov;69(5):1657–1665. doi: 10.1016/S0006-3495(95)80045-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eickhorn R., Weirich J., Hornung D., Antoni H. Use dependence of sodium current inhibition by tetrodotoxin in rat cardiac muscle: influence of channel state. Pflugers Arch. 1990 Jun;416(4):398–405. doi: 10.1007/BF00370746. [DOI] [PubMed] [Google Scholar]
- Goldstein S. A., Miller C. Mechanism of charybdotoxin block of a voltage-gated K+ channel. Biophys J. 1993 Oct;65(4):1613–1619. doi: 10.1016/S0006-3495(93)81200-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinemann S. H., Schlief T., Mori Y., Imoto K. Molecular pore structure of voltage-gated sodium and calcium channels. Braz J Med Biol Res. 1994 Dec;27(12):2781–2802. [PubMed] [Google Scholar]
- Heinemann S. H., Terlau H., Stühmer W., Imoto K., Numa S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature. 1992 Apr 2;356(6368):441–443. doi: 10.1038/356441a0. [DOI] [PubMed] [Google Scholar]
- Hille B. The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. Biophys J. 1975 Jun;15(6):615–619. doi: 10.1016/S0006-3495(75)85842-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kallen R. G., Cohen S. A., Barchi R. L. Structure, function and expression of voltage-dependent sodium channels. Mol Neurobiol. 1993 Fall-Winter;7(3-4):383–428. doi: 10.1007/BF02769184. [DOI] [PubMed] [Google Scholar]
- Kao C. Y. Structure-activity relations of tetrodotoxin, saxitoxin, and analogues. Ann N Y Acad Sci. 1986;479:52–67. doi: 10.1111/j.1749-6632.1986.tb15561.x. [DOI] [PubMed] [Google Scholar]
- Kontis K. J., Goldin A. L. Site-directed mutagenesis of the putative pore region of the rat IIA sodium channel. Mol Pharmacol. 1993 Apr;43(4):635–644. [PubMed] [Google Scholar]
- Lipkind G. M., Fozzard H. A. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys J. 1994 Jan;66(1):1–13. doi: 10.1016/S0006-3495(94)80746-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lönnendonker U. Use-dependent block of sodium channels in frog myelinated nerve by tetrodotoxin and saxitoxin at negative holding potentials. Biochim Biophys Acta. 1989 Oct 16;985(2):153–160. doi: 10.1016/0005-2736(89)90360-x. [DOI] [PubMed] [Google Scholar]
- Lönnendonker U. Use-dependent block with tetrodotoxin and saxitoxin at frog Ranvier nodes. I. Intrinsic channel and toxin parameters. Eur Biophys J. 1991;20(3):135–141. doi: 10.1007/BF01561135. [DOI] [PubMed] [Google Scholar]
- Lönnendonker U. Use-dependent block with tetrodotoxin and saxitoxin at frog Ranvier nodes. II. Extrinsic influence of cations. Eur Biophys J. 1991;20(3):143–149. doi: 10.1007/BF01561136. [DOI] [PubMed] [Google Scholar]
- MacKinnon R., Miller C. Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel. J Gen Physiol. 1988 Mar;91(3):335–349. doi: 10.1085/jgp.91.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makielski J. C., Satin J., Fan Z. Post-repolarization block of cardiac sodium channels by saxitoxin. Biophys J. 1993 Aug;65(2):790–798. doi: 10.1016/S0006-3495(93)81102-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NARAHASHI T., MOORE J. W., SCOTT W. R. TETRODOTOXIN BLOCKAGE OF SODIUM CONDUCTANCE INCREASE IN LOBSTER GIANT AXONS. J Gen Physiol. 1964 May;47:965–974. doi: 10.1085/jgp.47.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
- Noda M., Suzuki H., Numa S., Stühmer W. A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett. 1989 Dec 18;259(1):213–216. doi: 10.1016/0014-5793(89)81531-5. [DOI] [PubMed] [Google Scholar]
- Patton D. E., Goldin A. L. A voltage-dependent gating transition induces use-dependent block by tetrodotoxin of rat IIA sodium channels expressed in Xenopus oocytes. Neuron. 1991 Oct;7(4):637–647. doi: 10.1016/0896-6273(91)90376-b. [DOI] [PubMed] [Google Scholar]
- Pusch M., Noda M., Stühmer W., Numa S., Conti F. Single point mutations of the sodium channel drastically reduce the pore permeability without preventing its gating. Eur Biophys J. 1991;20(3):127–133. doi: 10.1007/BF01561134. [DOI] [PubMed] [Google Scholar]
- Salgado V. L., Yeh J. Z., Narahashi T. Use- and voltage-dependent block of the sodium channel by saxitoxin. Ann N Y Acad Sci. 1986;479:84–95. doi: 10.1111/j.1749-6632.1986.tb15563.x. [DOI] [PubMed] [Google Scholar]
- Satin J., Kyle J. W., Chen M., Bell P., Cribbs L. L., Fozzard H. A., Rogart R. B. A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science. 1992 May 22;256(5060):1202–1205. doi: 10.1126/science.256.5060.1202. [DOI] [PubMed] [Google Scholar]
- Satin J., Kyle J. W., Fan Z., Rogart R., Fozzard H. A., Makielski J. C. Post-repolarization block of cloned sodium channels by saxitoxin: the contribution of pore-region amino acids. Biophys J. 1994 May;66(5):1353–1363. doi: 10.1016/S0006-3495(94)80926-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stühmer W. Electrophysiological recording from Xenopus oocytes. Methods Enzymol. 1992;207:319–339. doi: 10.1016/0076-6879(92)07021-f. [DOI] [PubMed] [Google Scholar]
- Terlau H., Heinemann S. H., Stühmer W., Pusch M., Conti F., Imoto K., Numa S. Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett. 1991 Nov 18;293(1-2):93–96. doi: 10.1016/0014-5793(91)81159-6. [DOI] [PubMed] [Google Scholar]
- Tsushima R. G., Li R. A., Backx P. H. Altered ionic selectivity of the sodium channel revealed by cysteine mutations within the pore. J Gen Physiol. 1997 Apr;109(4):463–475. doi: 10.1085/jgp.109.4.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamagishi T., Janecki M., Marban E., Tomaselli G. F. Topology of the P segments in the sodium channel pore revealed by cysteine mutagenesis. Biophys J. 1997 Jul;73(1):195–204. doi: 10.1016/S0006-3495(97)78060-3. [DOI] [PMC free article] [PubMed] [Google Scholar]