Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jul;77(1):241–247. doi: 10.1016/S0006-3495(99)76885-2

Conformational changes of the in situ nuclear pore complex.

H Wang 1, D E Clapham 1
PMCID: PMC1300325  PMID: 10388753

Abstract

By bridging the double membrane separating the cell nucleus and cytoplasm, nuclear pore complexes (NPCs) are crucial pathways for the exchange of ions, proteins, and RNA between these two cellular compartments. A structure in the central lumen of the NPC, called the nuclear transport protein, central granule, or nuclear plug, appeared to gate diffusion of intermediate-sized molecules (10-40 kDa) across the nuclear membranes. Visualization of the NPC required drying and fixation of the specimen for electron and atomic force microscopy (AFM), a requirement that has raised doubts about the physiological relevance of the observation. Here we present AFM images of the outer nuclear membranes and NPCs of Xenopus laevis oocytes under more physiological conditions. Measured under a variety of Ca2+ depletion conditions, the central granule appeared to occupy and occlude the lumen of the pore in >80% of NPCs compared to <10% in controls. In a few instances images were obtained of the same NPCs as the solution was changed from control saline to store depletion conditions, and finally to store repletion conditions. We conclude that the central lumen of the nuclear pore complex undergoes a conformational change in response to depletion of nuclear cisternal Ca2+ levels.

Full Text

The Full Text of this article is available as a PDF (300.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akey C. W., Radermacher M. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J Cell Biol. 1993 Jul;122(1):1–19. doi: 10.1083/jcb.122.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akey C. W. Visualization of transport-related configurations of the nuclear pore transporter. Biophys J. 1990 Aug;58(2):341–355. doi: 10.1016/S0006-3495(90)82381-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen T. D., Rutherford S. A., Bennion G. R., Wiese C., Riepert S., Kiseleva E., Goldberg M. W. Three-dimensional surface structure analysis of the nucleus. Methods Cell Biol. 1998;53:125–138. doi: 10.1016/s0091-679x(08)60877-8. [DOI] [PubMed] [Google Scholar]
  4. Feldherr C. M., Akin D. The permeability of the nuclear envelope in dividing and nondividing cell cultures. J Cell Biol. 1990 Jul;111(1):1–8. doi: 10.1083/jcb.111.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Folprecht G., Schneider S., Oberleithner H. Aldosterone activates the nuclear pore transporter in cultured kidney cells imaged with atomic force microscopy. Pflugers Arch. 1996 Sep;432(5):831–838. doi: 10.1007/s004240050205. [DOI] [PubMed] [Google Scholar]
  6. Forbes D. J. Structure and function of the nuclear pore complex. Annu Rev Cell Biol. 1992;8:495–527. doi: 10.1146/annurev.cb.08.110192.002431. [DOI] [PubMed] [Google Scholar]
  7. Gerace L., Burke B. Functional organization of the nuclear envelope. Annu Rev Cell Biol. 1988;4:335–374. doi: 10.1146/annurev.cb.04.110188.002003. [DOI] [PubMed] [Google Scholar]
  8. Goldberg M. W., Allen T. D. Structural and functional organization of the nuclear envelope. Curr Opin Cell Biol. 1995 Jun;7(3):301–309. doi: 10.1016/0955-0674(95)80083-2. [DOI] [PubMed] [Google Scholar]
  9. Greber U. F., Gerace L. Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus. J Cell Biol. 1995 Jan;128(1-2):5–14. doi: 10.1083/jcb.128.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greber U. F., Gerace L. Nuclear protein import is inhibited by an antibody to a lumenal epitope of a nuclear pore complex glycoprotein. J Cell Biol. 1992 Jan;116(1):15–30. doi: 10.1083/jcb.116.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greber U. F., Senior A., Gerace L. A major glycoprotein of the nuclear pore complex is a membrane-spanning polypeptide with a large lumenal domain and a small cytoplasmic tail. EMBO J. 1990 May;9(5):1495–1502. doi: 10.1002/j.1460-2075.1990.tb08267.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greber U. F., Suomalainen M., Stidwill R. P., Boucke K., Ebersold M. W., Helenius A. The role of the nuclear pore complex in adenovirus DNA entry. EMBO J. 1997 Oct 1;16(19):5998–6007. doi: 10.1093/emboj/16.19.5998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hanover J. A. The nuclear pore: at the crossroads. FASEB J. 1992 Mar;6(6):2288–2295. doi: 10.1096/fasebj.6.6.1312045. [DOI] [PubMed] [Google Scholar]
  14. Hinshaw J. E., Carragher B. O., Milligan R. A. Architecture and design of the nuclear pore complex. Cell. 1992 Jun 26;69(7):1133–1141. doi: 10.1016/0092-8674(92)90635-p. [DOI] [PubMed] [Google Scholar]
  15. Inagaki N., Ito M., Nakano T., Inagaki M. Spatiotemporal distribution of protein kinase and phosphatase activities. Trends Biochem Sci. 1994 Nov;19(11):448–452. doi: 10.1016/0968-0004(94)90128-7. [DOI] [PubMed] [Google Scholar]
  16. Jarnik M., Aebi U. Toward a more complete 3-D structure of the nuclear pore complex. J Struct Biol. 1991 Dec;107(3):291–308. doi: 10.1016/1047-8477(91)90054-z. [DOI] [PubMed] [Google Scholar]
  17. Jiang L. W., Schindler M. Nuclear transport in 3T3 fibroblasts: effects of growth factors, transformation, and cell shape. J Cell Biol. 1988 Jan;106(1):13–19. doi: 10.1083/jcb.106.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mak D. O., Foskett J. K. Single-channel inositol 1,4,5-trisphosphate receptor currents revealed by patch clamp of isolated Xenopus oocyte nuclei. J Biol Chem. 1994 Nov 25;269(47):29375–29378. [PubMed] [Google Scholar]
  19. Mattaj I. W., Englmeier L. Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem. 1998;67:265–306. doi: 10.1146/annurev.biochem.67.1.265. [DOI] [PubMed] [Google Scholar]
  20. Miller J. B. Myoblast diversity in skeletal myogenesis: how much and to what end? Cell. 1992 Apr 3;69(1):1–3. doi: 10.1016/0092-8674(92)90111-o. [DOI] [PubMed] [Google Scholar]
  21. Panté N., Aebi U. Toward the molecular details of the nuclear pore complex. J Struct Biol. 1994 Nov-Dec;113(3):179–189. doi: 10.1006/jsbi.1994.1052. [DOI] [PubMed] [Google Scholar]
  22. Perez-Terzic C., Jaconi M., Clapham D. E. Nuclear calcium and the regulation of the nuclear pore complex. Bioessays. 1997 Sep;19(9):787–792. doi: 10.1002/bies.950190908. [DOI] [PubMed] [Google Scholar]
  23. Perez-Terzic C., Pyle J., Jaconi M., Stehno-Bittel L., Clapham D. E. Conformational states of the nuclear pore complex induced by depletion of nuclear Ca2+ stores. Science. 1996 Sep 27;273(5283):1875–1877. doi: 10.1126/science.273.5283.1875. [DOI] [PubMed] [Google Scholar]
  24. Pines J., Hunter T. Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol. 1991 Oct;115(1):1–17. doi: 10.1083/jcb.115.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rakowska A., Danker T., Schneider S. W., Oberleithner H. ATP-Induced shape change of nuclear pores visualized with the atomic force microscope. J Membr Biol. 1998 May 15;163(2):129–136. doi: 10.1007/s002329900377. [DOI] [PubMed] [Google Scholar]
  26. Stehno-Bittel L., Lückhoff A., Clapham D. E. Calcium release from the nucleus by InsP3 receptor channels. Neuron. 1995 Jan;14(1):163–167. doi: 10.1016/0896-6273(95)90250-3. [DOI] [PubMed] [Google Scholar]
  27. Stehno-Bittel L., Perez-Terzic C., Clapham D. E. Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science. 1995 Dec 15;270(5243):1835–1838. doi: 10.1126/science.270.5243.1835. [DOI] [PubMed] [Google Scholar]
  28. Strübing C., Clapham D. E. Active nuclear import and export is independent of lumenal Ca2+ stores in intact mammalian cells. J Gen Physiol. 1999 Feb;113(2):239–248. doi: 10.1085/jgp.113.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. York J. D., Majerus P. W. Nuclear phosphatidylinositols decrease during S-phase of the cell cycle in HeLa cells. J Biol Chem. 1994 Mar 18;269(11):7847–7850. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES