Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jul;77(1):341–353. doi: 10.1016/S0006-3495(99)76894-3

Physicochemical characterization and purification of cationic lipoplexes.

Y Xu 1, S W Hui 1, P Frederik 1, F C Szoka Jr 1
PMCID: PMC1300334  PMID: 10388762

Abstract

Cationic lipid-nucleic acid complexes (lipoplexes) consisting of dioleoyltrimethylammoniumpropane (DOTAP) liposomes and plasmid DNA were prepared at various charge ratios (cationic group to nucleotide phosphate), and the excess component was separated from the lipoplex. We measured the stoichiometry of the lipoplex, noted its colloidal properties, and observed its morphology and structure by electron microscopy. The colloidal properties of the lipoplexes were principally determined by the cationic lipid/DNA charge ratio and were independent of the lipid composition. In lipoplexes, the lipid membranes as observed in freeze-fracture electron microscopy were deformed into high-radius-of-curvature features whose characteristics depended on the lipid composition. Lipoplexes prepared at a threefold or greater excess of either DOTAP or DNA could be resolved into complexes with a defined stoichiometry and the excess component by sedimentation to equilibrium on sucrose gradients. The separated, positively charged complex retained high transfection activity and had reduced toxicity. The negatively charged lipoplex showed increased transfection activity compared to the starting mixture. In cryoelectron micrographs the positively charged complex was spherical and contained a condensed but indistinct interior structure. In contrast, the separated negatively charged lipoplexes had a prominent internal 5.9 +/- 0.1-nm periodic feature with material projecting as spikes from the spherical structure into the solution. It is likely that these two lipoplexes represent structures with different lipid and DNA packing.

Full Text

The Full Text of this article is available as a PDF (649.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloomfield V. A. DNA condensation. Curr Opin Struct Biol. 1996 Jun;6(3):334–341. doi: 10.1016/s0959-440x(96)80052-2. [DOI] [PubMed] [Google Scholar]
  2. Dan N. Formation of ordered domains in membrane-bound DNA. Biophys J. 1996 Sep;71(3):1267–1272. doi: 10.1016/S0006-3495(96)79326-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Düzgüneş N., Goldstein J. A., Friend D. S., Felgner P. L. Fusion of liposomes containing a novel cationic lipid, N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium: induction by multivalent anions and asymmetric fusion with acidic phospholipid vesicles. Biochemistry. 1989 Nov 14;28(23):9179–9184. doi: 10.1021/bi00449a033. [DOI] [PubMed] [Google Scholar]
  4. Eastman S. J., Siegel C., Tousignant J., Smith A. E., Cheng S. H., Scheule R. K. Biophysical characterization of cationic lipid: DNA complexes. Biochim Biophys Acta. 1997 Apr 3;1325(1):41–62. doi: 10.1016/s0005-2736(96)00242-8. [DOI] [PubMed] [Google Scholar]
  5. Farhood H., Serbina N., Huang L. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta. 1995 May 4;1235(2):289–295. doi: 10.1016/0005-2736(95)80016-9. [DOI] [PubMed] [Google Scholar]
  6. Felgner J. H., Kumar R., Sridhar C. N., Wheeler C. J., Tsai Y. J., Border R., Ramsey P., Martin M., Felgner P. L. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem. 1994 Jan 28;269(4):2550–2561. [PubMed] [Google Scholar]
  7. Felgner P. L., Barenholz Y., Behr J. P., Cheng S. H., Cullis P., Huang L., Jessee J. A., Seymour L., Szoka F., Thierry A. R. Nomenclature for synthetic gene delivery systems. Hum Gene Ther. 1997 Mar 20;8(5):511–512. doi: 10.1089/hum.1997.8.5-511. [DOI] [PubMed] [Google Scholar]
  8. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frederik P. M., Burger K. N., Stuart M. C., Verkleij A. J. Lipid polymorphism as observed by cryo-electron microscopy. Biochim Biophys Acta. 1991 Feb 25;1062(2):133–141. doi: 10.1016/0005-2736(91)90384-k. [DOI] [PubMed] [Google Scholar]
  10. Gao X., Huang L. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Commun. 1991 Aug 30;179(1):280–285. doi: 10.1016/0006-291x(91)91366-k. [DOI] [PubMed] [Google Scholar]
  11. Gao X., Huang L. Cationic liposome-mediated gene transfer. Gene Ther. 1995 Dec;2(10):710–722. [PubMed] [Google Scholar]
  12. Gershon H., Ghirlando R., Guttman S. B., Minsky A. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochemistry. 1993 Jul 20;32(28):7143–7151. doi: 10.1021/bi00079a011. [DOI] [PubMed] [Google Scholar]
  13. Gustafsson J., Arvidson G., Karlsson G., Almgren M. Complexes between cationic liposomes and DNA visualized by cryo-TEM. Biochim Biophys Acta. 1995 May 4;1235(2):305–312. doi: 10.1016/0005-2736(95)80018-b. [DOI] [PubMed] [Google Scholar]
  14. Hofland H. E., Shephard L., Sullivan S. M. Formation of stable cationic lipid/DNA complexes for gene transfer. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7305–7309. doi: 10.1073/pnas.93.14.7305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hui S. W. Freeze fracture studies of membrane lipids. Electron Microsc Rev. 1988;1(2):351–370. doi: 10.1016/0892-0354(88)90007-x. [DOI] [PubMed] [Google Scholar]
  16. Hui S. W., Langner M., Zhao Y. L., Ross P., Hurley E., Chan K. The role of helper lipids in cationic liposome-mediated gene transfer. Biophys J. 1996 Aug;71(2):590–599. doi: 10.1016/S0006-3495(96)79309-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jäskeläinen I., Mönkkönen J., Urtti A. Oligonucleotide-cationic liposome interactions. A physicochemical study. Biochim Biophys Acta. 1994 Oct 12;1195(1):115–123. doi: 10.1016/0005-2736(94)90017-5. [DOI] [PubMed] [Google Scholar]
  18. Keren-Zur M., Beigel M., Loyter A. Induction of fusion in aggregated and nonaggregated liposomes bearing cationic detergents. Biochim Biophys Acta. 1989 Aug 7;983(2):253–258. doi: 10.1016/0005-2736(89)90241-1. [DOI] [PubMed] [Google Scholar]
  19. Legendre J. Y., Szoka F. C., Jr Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res. 1992 Oct;9(10):1235–1242. doi: 10.1023/a:1015836829670. [DOI] [PubMed] [Google Scholar]
  20. Leventis R., Silvius J. R. Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochim Biophys Acta. 1990 Mar 30;1023(1):124–132. doi: 10.1016/0005-2736(90)90017-i. [DOI] [PubMed] [Google Scholar]
  21. MacGregor G. R., Caskey C. T. Construction of plasmids that express E. coli beta-galactosidase in mammalian cells. Nucleic Acids Res. 1989 Mar 25;17(6):2365–2365. doi: 10.1093/nar/17.6.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mahato R. I., Kawabata K., Nomura T., Takakura Y., Hashida M. Physicochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes. J Pharm Sci. 1995 Nov;84(11):1267–1271. doi: 10.1002/jps.2600841102. [DOI] [PubMed] [Google Scholar]
  23. Rädler J. O., Koltover I., Salditt T., Safinya C. R. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science. 1997 Feb 7;275(5301):810–814. doi: 10.1126/science.275.5301.810. [DOI] [PubMed] [Google Scholar]
  24. Stamatatos L., Leventis R., Zuckermann M. J., Silvius J. R. Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes. Biochemistry. 1988 May 31;27(11):3917–3925. doi: 10.1021/bi00411a005. [DOI] [PubMed] [Google Scholar]
  25. Sternberg B., Hong K., Zheng W., Papahadjopoulos D. Ultrastructural characterization of cationic liposome-DNA complexes showing enhanced stability in serum and high transfection activity in vivo. Biochim Biophys Acta. 1998 Oct 15;1375(1-2):23–35. doi: 10.1016/s0005-2736(98)00129-1. [DOI] [PubMed] [Google Scholar]
  26. Sternberg B., Sorgi F. L., Huang L. New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett. 1994 Dec 19;356(2-3):361–366. doi: 10.1016/0014-5793(94)01315-2. [DOI] [PubMed] [Google Scholar]
  27. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  28. Tang M. X., Redemann C. T., Szoka F. C., Jr In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem. 1996 Nov-Dec;7(6):703–714. doi: 10.1021/bc9600630. [DOI] [PubMed] [Google Scholar]
  29. Xu Y., Szoka F. C., Jr Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996 May 7;35(18):5616–5623. doi: 10.1021/bi9602019. [DOI] [PubMed] [Google Scholar]
  30. Zelphati O., Szoka F. C., Jr Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11493–11498. doi: 10.1073/pnas.93.21.11493. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES