Abstract
Human acidic fibroblast growth factor (FGF-1) is a powerful mitogen and angiogenic factor with an apparent melting temperature (Tm) in the physiological range. FGF-1 is an example of a protein that is regulated, in part, by stability-based mechanisms. For example, the low Tm of FGF-1 has been postulated to play an important role in the unusual endoplasmic reticulum-independent secretion of this growth factor. Despite the close relationship between function and stability, accurate thermodynamic parameters of unfolding for FGF-1 have been unavailable, presumably due to effects of irreversible thermal denaturation. Here we report the determination of thermodynamic parameters of unfolding (DeltaH, DeltaG, and DeltaCp) for FGF-1 using differential scanning calorimetry (DSC). The thermal denaturation is demonstrated to be two-state and reversible upon the addition of low concentrations of added guanidine hydrochloride (GuHCl). DeltaG values from the DSC studies are in excellent agreement with values from isothermal GuHCl denaturation monitored by fluorescence and circular dichroism (CD) spectroscopy. Furthermore, the results indicate that irreversible denaturation is closely associated with the formation of an unfolding intermediate. GuHCl appears to promote reversible two-state denaturation by initially preventing aggregation of this unfolding intermediate, and at subsequently higher concentrations, by preventing formation of the intermediate.
Full Text
The Full Text of this article is available as a PDF (105.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham J. A., Mergia A., Whang J. L., Tumolo A., Friedman J., Hjerrild K. A., Gospodarowicz D., Fiddes J. C. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science. 1986 Aug 1;233(4763):545–548. doi: 10.1126/science.2425435. [DOI] [PubMed] [Google Scholar]
- Blaber M., DiSalvo J., Thomas K. A. X-ray crystal structure of human acidic fibroblast growth factor. Biochemistry. 1996 Feb 20;35(7):2086–2094. doi: 10.1021/bi9521755. [DOI] [PubMed] [Google Scholar]
- Bourque W. T., Gross M., Hall B. K. Expression of four growth factors during fracture repair. Int J Dev Biol. 1993 Dec;37(4):573–579. [PubMed] [Google Scholar]
- Burke C. J., Volkin D. B., Mach H., Middaugh C. R. Effect of polyanions on the unfolding of acidic fibroblast growth factor. Biochemistry. 1993 Jun 29;32(25):6419–6426. doi: 10.1021/bi00076a015. [DOI] [PubMed] [Google Scholar]
- Bychkova V. E., Pain R. H., Ptitsyn O. B. The 'molten globule' state is involved in the translocation of proteins across membranes? FEBS Lett. 1988 Oct 10;238(2):231–234. doi: 10.1016/0014-5793(88)80485-x. [DOI] [PubMed] [Google Scholar]
- Colvin J. S., Bohne B. A., Harding G. W., McEwen D. G., Ornitz D. M. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996 Apr;12(4):390–397. doi: 10.1038/ng0496-390. [DOI] [PubMed] [Google Scholar]
- Copeland R. A., Ji H., Halfpenny A. J., Williams R. W., Thompson K. C., Herber W. K., Thomas K. A., Bruner M. W., Ryan J. A., Marquis-Omer D. The structure of human acidic fibroblast growth factor and its interaction with heparin. Arch Biochem Biophys. 1991 Aug 15;289(1):53–61. doi: 10.1016/0003-9861(91)90441-k. [DOI] [PubMed] [Google Scholar]
- Deng C., Wynshaw-Boris A., Zhou F., Kuo A., Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996 Mar 22;84(6):911–921. doi: 10.1016/s0092-8674(00)81069-7. [DOI] [PubMed] [Google Scholar]
- Eftink M. R. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J. 1994 Feb;66(2 Pt 1):482–501. doi: 10.1016/s0006-3495(94)80799-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzpatrick L. R., Jakubowska A., Martin G. E., Davis M., Jaye M. C., Dionne C. A. Acidic fibroblast growth factor accelerates the healing of acetic-acid-induced gastric ulcers in rats. Digestion. 1992;53(1-2):17–27. doi: 10.1159/000200967. [DOI] [PubMed] [Google Scholar]
- Gimenez-Gallego G., Conn G., Hatcher V. B., Thomas K. A. The complete amino acid sequence of human brain-derived acidic fibroblast growth factor. Biochem Biophys Res Commun. 1986 Jul 31;138(2):611–617. doi: 10.1016/s0006-291x(86)80540-x. [DOI] [PubMed] [Google Scholar]
- Gospodarowicz D., Cheng J. Heparin protects basic and acidic FGF from inactivation. J Cell Physiol. 1986 Sep;128(3):475–484. doi: 10.1002/jcp.1041280317. [DOI] [PubMed] [Google Scholar]
- Jackson A., Friedman S., Zhan X., Engleka K. A., Forough R., Maciag T. Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10691–10695. doi: 10.1073/pnas.89.22.10691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaye M., Howk R., Burgess W., Ricca G. A., Chiu I. M., Ravera M. W., O'Brien S. J., Modi W. S., Maciag T., Drohan W. N. Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization. Science. 1986 Aug 1;233(4763):541–545. doi: 10.1126/science.3523756. [DOI] [PubMed] [Google Scholar]
- Landau C., Jacobs A. K., Haudenschild C. C. Intrapericardial basic fibroblast growth factor induces myocardial angiogenesis in a rabbit model of chronic ischemia. Am Heart J. 1995 May;129(5):924–931. doi: 10.1016/0002-8703(95)90113-2. [DOI] [PubMed] [Google Scholar]
- Linemeyer D. L., Menke J. G., Kelly L. J., DiSalvo J., Soderman D., Schaeffer M. T., Ortega S., Gimenez-Gallego G., Thomas K. A. Disulfide bonds are neither required, present, nor compatible with full activity of human recombinant acidic fibroblast growth factor. Growth Factors. 1990;3(4):287–298. doi: 10.3109/08977199009003671. [DOI] [PubMed] [Google Scholar]
- Mach H., Middaugh C. R. Interaction of partially structured states of acidic fibroblast growth factor with phospholipid membranes. Biochemistry. 1995 Aug 8;34(31):9913–9920. doi: 10.1021/bi00031a013. [DOI] [PubMed] [Google Scholar]
- Mach H., Volkin D. B., Burke C. J., Middaugh C. R., Linhardt R. J., Fromm J. R., Loganathan D., Mattsson L. Nature of the interaction of heparin with acidic fibroblast growth factor. Biochemistry. 1993 May 25;32(20):5480–5489. doi: 10.1021/bi00071a026. [DOI] [PubMed] [Google Scholar]
- Mellin T. N., Mennie R. J., Cashen D. E., Ronan J. J., Capparella J., James M. L., Disalvo J., Frank J., Linemeyer D., Gimenez-Gallego G. Acidic fibroblast growth factor accelerates dermal wound healing. Growth Factors. 1992;7(1):1–14. doi: 10.3109/08977199209023933. [DOI] [PubMed] [Google Scholar]
- Nabel E. G., Yang Z. Y., Plautz G., Forough R., Zhan X., Haudenschild C. C., Maciag T., Nabel G. J. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature. 1993 Apr 29;362(6423):844–846. doi: 10.1038/362844a0. [DOI] [PubMed] [Google Scholar]
- Ortega S., Ittmann M., Tsang S. H., Ehrlich M., Basilico C. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5672–5677. doi: 10.1073/pnas.95.10.5672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Privalov P. L., Potekhin S. A. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 1986;131:4–51. doi: 10.1016/0076-6879(86)31033-4. [DOI] [PubMed] [Google Scholar]
- Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
- Pu L. Q., Sniderman A. D., Brassard R., Lachapelle K. J., Graham A. M., Lisbona R., Symes J. F. Enhanced revascularization of the ischemic limb by angiogenic therapy. Circulation. 1993 Jul;88(1):208–215. doi: 10.1161/01.cir.88.1.208. [DOI] [PubMed] [Google Scholar]
- Romero A., Pineda-Lucena A., Giménez-Gallego G. X-ray structure of native full-length human fibroblast-growth factor at 0.25-nm resolution. Eur J Biochem. 1996 Oct 15;241(2):453–461. doi: 10.1111/j.1432-1033.1996.00453.x. [DOI] [PubMed] [Google Scholar]
- Rosengart T. K., Johnson W. V., Friesel R., Clark R., Maciag T. Heparin protects heparin-binding growth factor-I from proteolytic inactivation in vitro. Biochem Biophys Res Commun. 1988 Apr 15;152(1):432–440. doi: 10.1016/s0006-291x(88)80732-0. [DOI] [PubMed] [Google Scholar]
- Sanz J. M., Giménez-Gallego G. A partly folded state of acidic fibroblast growth factor at low pH. Eur J Biochem. 1997 Jun 1;246(2):328–335. doi: 10.1111/j.1432-1033.1997.00328.x. [DOI] [PubMed] [Google Scholar]
- Schlaudraff K., Schumacher B., von Specht B. U., Seitelberger R., Schlosser V., Fasol R. Growth of "new" coronary vascular structures by angiogenetic growth factors. Eur J Cardiothorac Surg. 1993;7(12):637–644. doi: 10.1016/1010-7940(93)90258-d. [DOI] [PubMed] [Google Scholar]
- Schneider M. D., Parker T. G. Cardiac growth factors. Prog Growth Factor Res. 1991;3(1):1–26. doi: 10.1016/0955-2235(91)90010-2. [DOI] [PubMed] [Google Scholar]
- Schumacher B., Pecher P., von Specht B. U., Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation. 1998 Feb 24;97(7):645–650. doi: 10.1161/01.cir.97.7.645. [DOI] [PubMed] [Google Scholar]
- Shirley B. A. Urea and guanidine hydrochloride denaturation curves. Methods Mol Biol. 1995;40:177–190. doi: 10.1385/0-89603-301-5:177. [DOI] [PubMed] [Google Scholar]
- Slack J. M., Darlington B. G., Heath J. K., Godsave S. F. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature. 1987 Mar 12;326(6109):197–200. doi: 10.1038/326197a0. [DOI] [PubMed] [Google Scholar]
- Thomas K. A., Rios-Candelore M., Giménez-Gallego G., DiSalvo J., Bennett C., Rodkey J., Fitzpatrick S. Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6409–6413. doi: 10.1073/pnas.82.19.6409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. A., Haudenschild C. C., Anderson K. D., DiPietro J. M., Anderson W. F., Maciag T. Heparin-binding growth factor 1 induces the formation of organoid neovascular structures in vivo. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7928–7932. doi: 10.1073/pnas.86.20.7928. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- Tsai P. K., Volkin D. B., Dabora J. M., Thompson K. C., Bruner M. W., Gress J. O., Matuszewska B., Keogan M., Bondi J. V., Middaugh C. R. Formulation design of acidic fibroblast growth factor. Pharm Res. 1993 May;10(5):649–659. doi: 10.1023/a:1018939228201. [DOI] [PubMed] [Google Scholar]
- Unger E. F., Banai S., Shou M., Lazarous D. F., Jaklitsch M. T., Scheinowitz M., Correa R., Klingbeil C., Epstein S. E. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol. 1994 Apr;266(4 Pt 2):H1588–H1595. doi: 10.1152/ajpheart.1994.266.4.H1588. [DOI] [PubMed] [Google Scholar]
- Wiedlocha A., Madshus I. H., Mach H., Middaugh C. R., Olsnes S. Tight folding of acidic fibroblast growth factor prevents its translocation to the cytosol with diphtheria toxin as vector. EMBO J. 1992 Dec;11(13):4835–4842. doi: 10.1002/j.1460-2075.1992.tb05589.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanagisawa-Miwa A., Uchida Y., Nakamura F., Tomaru T., Kido H., Kamijo T., Sugimoto T., Kaji K., Utsuyama M., Kurashima C. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science. 1992 Sep 4;257(5075):1401–1403. doi: 10.1126/science.1382313. [DOI] [PubMed] [Google Scholar]
- Zazo M., Lozano R. M., Ortega S., Varela J., Díaz-Orejas R., Ramírez J. M., Giménez-Gallego G. High-level synthesis in Escherichia coli of shortened and full-length human acidic fibroblast growth factor and purification in a form stable in aqueous solutions. Gene. 1992 Apr 15;113(2):231–238. doi: 10.1016/0378-1119(92)90400-j. [DOI] [PubMed] [Google Scholar]