Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jul;77(1):478–492. doi: 10.1016/S0006-3495(99)76905-5

The quantum mixed-spin heme state of barley peroxidase: A paradigm for class III peroxidases.

B D Howes 1, C B Schiodt 1, K G Welinder 1, M P Marzocchi 1, J G Ma 1, J Zhang 1, J A Shelnutt 1, G Smulevich 1
PMCID: PMC1300345  PMID: 10388773

Abstract

Electronic absorption and resonance Raman (RR) spectra of the ferric form of barley grain peroxidase (BP 1) at various pH values, at both room temperature and 20 K, are reported, together with electron paramagnetic resonance spectra at 10 K. The ferrous forms and the ferric complex with fluoride have also been studied. A quantum mechanically mixed-spin (QS) state has been identified. The QS heme species coexists with 6- and 5-cHS hemes; the relative populations of these three spin states are found to be dependent on pH and temperature. However, the QS species remains in all cases the dominant heme spin species. Barley peroxidase appears to be further characterized by a splitting of the two vinyl stretching modes, indicating that the vinyl groups are differently conjugated with the porphyrin. An analysis of the currently available spectroscopic data for proteins from all three peroxidase classes suggests that the simultaneous occurrence of the QS heme state as well as the splitting of the two vinyl stretching modes is confined to class III enzymes. The former point is discussed in terms of the possible influences of heme deformations on heme spin state. It is found that moderate saddling alone is probably not enough to cause the QS state, although some saddling may be necessary for the QS state.

Full Text

The Full Text of this article is available as a PDF (233.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abola E. E., Sussman J. L., Prilusky J., Manning N. O. Protein Data Bank archives of three-dimensional macromolecular structures. Methods Enzymol. 1997;277:556–571. doi: 10.1016/s0076-6879(97)77031-9. [DOI] [PubMed] [Google Scholar]
  2. Blumberg W. E., Peisach J., Wittenberg B. A., Wittenberg J. B. The electronic structure of protoheme proteins. I. An electron paramagnetic resonance and optical study of horseradish peroxidase and its derivatives. J Biol Chem. 1968 Apr 25;243(8):1854–1862. [PubMed] [Google Scholar]
  3. Conroy C. W., Tyma P., Daum P. H., Erman J. E. Oxidation-reduction potential measurements of cytochrome c peroxidase and pH dependent spectral transitions in the ferrous enzyme. Biochim Biophys Acta. 1978 Nov 20;537(1):62–69. doi: 10.1016/0005-2795(78)90602-5. [DOI] [PubMed] [Google Scholar]
  4. Feis A., Marzocchi M. P., Paoli M., Smulevich G. Spin state and axial ligand bonding in the hydroxide complexes of metmyoglobin, methemoglobin, and horseradish peroxidase at room and low temperatures. Biochemistry. 1994 Apr 19;33(15):4577–4583. doi: 10.1021/bi00181a019. [DOI] [PubMed] [Google Scholar]
  5. Fenna R., Zeng J., Davey C. Structure of the green heme in myeloperoxidase. Arch Biochem Biophys. 1995 Jan 10;316(1):653–656. doi: 10.1006/abbi.1995.1086. [DOI] [PubMed] [Google Scholar]
  6. Finzel B. C., Weber P. C., Hardman K. D., Salemme F. R. Structure of ferricytochrome c' from Rhodospirillum molischianum at 1.67 A resolution. J Mol Biol. 1985 Dec 5;186(3):627–643. doi: 10.1016/0022-2836(85)90135-4. [DOI] [PubMed] [Google Scholar]
  7. Fujii S., Yoshimura T., Kamada H., Yamaguchi K., Suzuki S., Shidara S., Takakuwa S. Electron paramagnetic resonance studies of ferric cytochrome c' from photosynthetic bacteria. Biochim Biophys Acta. 1995 Sep 6;1251(2):161–169. doi: 10.1016/0167-4838(95)00092-9. [DOI] [PubMed] [Google Scholar]
  8. Gajhede M., Schuller D. J., Henriksen A., Smith A. T., Poulos T. L. Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nat Struct Biol. 1997 Dec;4(12):1032–1038. doi: 10.1038/nsb1297-1032. [DOI] [PubMed] [Google Scholar]
  9. Henriksen A., Welinder K. G., Gajhede M. Structure of barley grain peroxidase refined at 1.9-A resolution. A plant peroxidase reversibly inactivated at neutral pH. J Biol Chem. 1998 Jan 23;273(4):2241–2248. doi: 10.1074/jbc.273.4.2241. [DOI] [PubMed] [Google Scholar]
  10. Hobbs J. D., Shelnutt J. A. Conserved nonplanar heme distortions in cytochromes c. J Protein Chem. 1995 Jan;14(1):19–25. doi: 10.1007/BF01902840. [DOI] [PubMed] [Google Scholar]
  11. Hori H., Fenna R. E., Kimura S., Ikeda-Saito M. Aromatic substrate molecules bind at the distal heme pocket of myeloperoxidase. J Biol Chem. 1994 Mar 18;269(11):8388–8392. [PubMed] [Google Scholar]
  12. Jentzen W., Ma J. G., Shelnutt J. A. Conservation of the conformation of the porphyrin macrocycle in hemoproteins. Biophys J. 1998 Feb;74(2 Pt 1):753–763. doi: 10.1016/S0006-3495(98)74000-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KEILIN D., HARTREE E. F. Purification of horse-radish peroxidase and comparison of its properties with those of catalase and methaemoglobin. Biochem J. 1951 Jun;49(1):88–104. doi: 10.1042/bj0490088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leigh J. S., Maltempo M. M., Ohlsson P. I., Paul K. G. Optical, NMR and EPR properties of horseradish peroxidase and its donor complexes. FEBS Lett. 1975 Mar 1;51(1):304–308. doi: 10.1016/0014-5793(75)80913-6. [DOI] [PubMed] [Google Scholar]
  15. Ma J. G., Laberge M., Song X. Z., Jentzen W., Jia S. L., Zhang J., Vanderkooi J. M., Shelnutt J. A. Protein-induced changes in nonplanarity of the porphyrin in nickel cytochrome c probed by resonance Raman spectroscopy. Biochemistry. 1998 Apr 14;37(15):5118–5128. doi: 10.1021/bi972375b. [DOI] [PubMed] [Google Scholar]
  16. Ma J. G., Zhang J., Franco R., Jia S. L., Moura I., Moura J. J., Kroneck P. M., Shelnutt J. A. The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c3. Biochemistry. 1998 Sep 8;37(36):12431–12442. doi: 10.1021/bi981189i. [DOI] [PubMed] [Google Scholar]
  17. Maltempo M. M., Moss T. H., Cusanovich M. A. Magnetic studies on the changes in the iron environment in Chromatium ferricytochrome c'. Biochim Biophys Acta. 1974 Apr 11;342(2):290–305. doi: 10.1016/0005-2795(74)90084-1. [DOI] [PubMed] [Google Scholar]
  18. Maltempo M. M., Ohlsson P. I., Paul K. G., Petersson L., Ehrenberg A. Electron paramagnetic resonance analyses of horseradish peroxidase in situ and after purification. Biochemistry. 1979 Jul 10;18(14):2935–2941. doi: 10.1021/bi00581a003. [DOI] [PubMed] [Google Scholar]
  19. Maltempo M. M. Visible absorption spectra of quantum mixed-spin ferric heme proteins. Biochim Biophys Acta. 1976 Jun 15;434(2):513–518. doi: 10.1016/0005-2795(76)90243-9. [DOI] [PubMed] [Google Scholar]
  20. Nissum M., Feis A., Smulevich G. Characterization of soybean seed coat peroxidase: resonance Raman evidence for a structure-based classification of plant peroxidases. Biospectroscopy. 1998;4(6):355–364. doi: 10.1002/(sici)1520-6343(1998)4:6<355::aid-bspy1>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  21. Nissum M., Neri F., Mandelman D., Poulos T. L., Smulevich G. Spectroscopic characterization of recombinant pea cytosolic ascorbate peroxidase: similarities and differences with cytochrome c peroxidase. Biochemistry. 1998 Jun 2;37(22):8080–8087. doi: 10.1021/bi980111z. [DOI] [PubMed] [Google Scholar]
  22. Othman S., Richaud P., Verméglio A., Desbois A. Evidence for a proximal histidine interaction in the structure of cytochromes c in solution: a resonance Raman study. Biochemistry. 1996 Jul 16;35(28):9224–9234. doi: 10.1021/bi952818g. [DOI] [PubMed] [Google Scholar]
  23. Rasmussen C. B., Bakovic M., Welinder K. G., Dunford H. B. Unique reaction of a barley peroxidase with hydrogen peroxide. FEBS Lett. 1993 Apr 19;321(1):102–105. doi: 10.1016/0014-5793(93)80630-d. [DOI] [PubMed] [Google Scholar]
  24. Rasmussen C. B., Hiner A. N., Smith A. T., Welinder K. G. Effect of calcium, other ions, and pH on the reactions of barley peroxidase with hydrogen peroxide and fluoride. Control of activity through conformational change. J Biol Chem. 1998 Jan 23;273(4):2232–2240. doi: 10.1074/jbc.273.4.2232. [DOI] [PubMed] [Google Scholar]
  25. Ren Z., Meyer T., McRee D. E. Atomic structure of a cytochrome c' with an unusual ligand-controlled dimer dissociation at 1.8 A resolution. J Mol Biol. 1993 Nov 20;234(2):433–445. doi: 10.1006/jmbi.1993.1597. [DOI] [PubMed] [Google Scholar]
  26. Schonbaum G. R. New complexes of peroxidases with hydroxamic acids, hydrazides, and amides. J Biol Chem. 1973 Jan 25;248(2):502–511. [PubMed] [Google Scholar]
  27. Schuller D. J., Ban N., Huystee R. B., McPherson A., Poulos T. L. The crystal structure of peanut peroxidase. Structure. 1996 Mar 15;4(3):311–321. doi: 10.1016/s0969-2126(96)00035-4. [DOI] [PubMed] [Google Scholar]
  28. Smulevich G., English A. M., Mantini A. R., Marzocchi M. P. Resonance Raman investigation of ferric iron in horseradish peroxidase and its aromatic donor complexes at room and low temperatures. Biochemistry. 1991 Jan 22;30(3):772–779. doi: 10.1021/bi00217a029. [DOI] [PubMed] [Google Scholar]
  29. Smulevich G., Feis A., Focardi C., Tams J., Welinder K. G. Resonance Raman study of the active site of Coprinus cinereus peroxidase. Biochemistry. 1994 Dec 27;33(51):15425–15432. doi: 10.1021/bi00255a024. [DOI] [PubMed] [Google Scholar]
  30. Smulevich G., Feis A., Indiani C., Becucci M., Marzocchi M. P. Peroxidase-benzhydroxamic acid complexes: spectroscopic evidence that a Fe-H2O distance of 2.6 A can correspond to hexa-coordinate high-spin heme. J Biol Inorg Chem. 1999 Feb;4(1):39–47. doi: 10.1007/s007750050287. [DOI] [PubMed] [Google Scholar]
  31. Smulevich G., Mauro J. M., Fishel L. A., English A. M., Kraut J., Spiro T. G. Cytochrome c peroxidase mutant active site structures probed by resonance Raman and infrared signatures of the CO adducts. Biochemistry. 1988 Jul 26;27(15):5486–5492. doi: 10.1021/bi00415a015. [DOI] [PubMed] [Google Scholar]
  32. Smulevich G., Paoli M., Burke J. F., Sanders S. A., Thorneley R. N., Smith A. T. Characterization of recombinant horseradish peroxidase C and three site-directed mutants, F41V, F41W, and R38K, by resonance Raman spectroscopy. Biochemistry. 1994 Jun 14;33(23):7398–7407. doi: 10.1021/bi00189a046. [DOI] [PubMed] [Google Scholar]
  33. Smulevich G. Understanding heme cavity structure of peroxidases: comparison of electronic absorption and resonance Raman spectra with crystallographic results. Biospectroscopy. 1998;4(5 Suppl):S3–17. doi: 10.1002/(SICI)1520-6343(1998)4:5+<S3::AID-BSPY2>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  34. Strekas T. C., Spiro T. G. Resonance-raman evidence for anomalous heme structures in cytochrome c' from Rhodopseudomonas palustris. Biochim Biophys Acta. 1974 Jun 7;351(2):237–245. doi: 10.1016/0005-2795(74)90186-x. [DOI] [PubMed] [Google Scholar]
  35. Tamura M. Optical and magnetic measurements of horseradish peroxidase. II. pH dependence of peroxidase. Biochim Biophys Acta. 1971 Aug 27;243(2):249–258. doi: 10.1016/0005-2795(71)90082-1. [DOI] [PubMed] [Google Scholar]
  36. Tanaka M., Nagano S., Ishimori K., Morishima I. Hydrogen bond network in the distal site of peroxidases: spectroscopic properties of Asn70 --> Asp horseradish peroxidase mutant. Biochemistry. 1997 Aug 12;36(32):9791–9798. doi: 10.1021/bi9706172. [DOI] [PubMed] [Google Scholar]
  37. Teraoka J., Kitagawa T. Structural implication of the heme-linked ionization of horseradish peroxidase probed by the Fe-histidine stretching Raman line. J Biol Chem. 1981 Apr 25;256(8):3969–3977. [PubMed] [Google Scholar]
  38. Wang J. M., Mauro M., Edwards S. L., Oatley S. J., Fishel L. A., Ashford V. A., Xuong N. H., Kraut J. X-ray structures of recombinant yeast cytochrome c peroxidase and three heme-cleft mutants prepared by site-directed mutagenesis. Biochemistry. 1990 Aug 7;29(31):7160–7173. doi: 10.1021/bi00483a003. [DOI] [PubMed] [Google Scholar]
  39. Yasui M., Harada S., Kai Y., Kasai N., Kusunoki M., Matsuura Y. Three-dimensional structure of ferricytochrome c' from Rhodospirillum rubrum at 2.8 A resolution. J Biochem. 1992 Mar;111(3):317–324. doi: 10.1093/oxfordjournals.jbchem.a123756. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES