Abstract
Submicron particles such as latex spheres and viruses can be manipulated and characterized using dielectrophoresis. By the use of appropriate microelectrode arrays, particles can be trapped or moved between regions of high or low electric fields. The magnitude and direction of the dielectrophoretic force on the particle depends on its dielectric properties, so that a heterogeneous mixture of particles can be separated to produce a more homogeneous population. In this paper the controlled separation of submicron bioparticles is demonstrated. With electrode arrays fabricated using direct write electron beam lithography, it is shown that different types of submicron latex spheres can be spatially separated. The separation occurs as a result of differences in magnitude and/or direction of the dielectrophoretic force on different populations of particles. These differences arise mainly because the surface properties of submicron particles dominate their dielectrophoretic behavior. It is also demonstrated that tobacco mosaic virus and herpes simplex virus can be manipulated and spatially separated in a microelectrode array.
Full Text
The Full Text of this article is available as a PDF (717.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asbury C. L., van den Engh G. Trapping of DNA in nonuniform oscillating electric fields. Biophys J. 1998 Feb;74(2 Pt 1):1024–1030. doi: 10.1016/s0006-3495(98)74027-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker F. F., Wang X. B., Huang Y., Pethig R., Vykoukal J., Gascoyne P. R. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):860–864. doi: 10.1073/pnas.92.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green N. G., Morgan H., Milner J. J. Manipulation and trapping of sub-micron bioparticles using dielectrophoresis. J Biochem Biophys Methods. 1997 Sep 25;35(2):89–102. doi: 10.1016/s0165-022x(97)00033-x. [DOI] [PubMed] [Google Scholar]
- Hsu S. H., Wang B. T., Huang M. H., Wong W. J., Cross J. H. Growth of Japanese encephalitis virus in Culex tritaeniorhynchus cell cultures. Am J Trop Med Hyg. 1975 Sep;24(5):881–888. doi: 10.4269/ajtmh.1975.24.881. [DOI] [PubMed] [Google Scholar]
- Huang Y., Hölzel R., Pethig R., Wang X. B. Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol. 1992 Jul;37(7):1499–1517. doi: 10.1088/0031-9155/37/7/003. [DOI] [PubMed] [Google Scholar]
- Hughes M. P., Morgan H., Rixon F. J., Burt J. P., Pethig R. Manipulation of herpes simplex virus type 1 by dielectrophoresis. Biochim Biophys Acta. 1998 Sep 16;1425(1):119–126. doi: 10.1016/s0304-4165(98)00058-0. [DOI] [PubMed] [Google Scholar]
- Irimajiri A., Hanai T., Inouye A. A dielectric theory of "multi-stratified shell" model with its application to a lymphoma cell. J Theor Biol. 1979 May 21;78(2):251–269. doi: 10.1016/0022-5193(79)90268-6. [DOI] [PubMed] [Google Scholar]
- Markx G. H., Dyda P. A., Pethig R. Dielectrophoretic separation of bacteria using a conductivity gradient. J Biotechnol. 1996 Nov 1;51(2):175–180. doi: 10.1016/0168-1656(96)01617-3. [DOI] [PubMed] [Google Scholar]
- Markx G. H., Talary M. S., Pethig R. Separation of viable and non-viable yeast using dielectrophoresis. J Biotechnol. 1994 Jan 15;32(1):29–37. doi: 10.1016/0168-1656(94)90117-1. [DOI] [PubMed] [Google Scholar]
- Price J. A., Burt J. P., Pethig R. Applications of a new optical technique for measuring the dielectrophoretic behaviour of micro-organisms. Biochim Biophys Acta. 1988 Feb 17;964(2):221–230. doi: 10.1016/0304-4165(88)90170-5. [DOI] [PubMed] [Google Scholar]
- Schnelle T., Müller T., Fiedler S., Shirley S. G., Ludwig K., Herrmann A., Fuhr G., Wagner B., Zimmermann U. Trapping of viruses in high-frequency electric field cages. Naturwissenschaften. 1996 Apr;83(4):172–176. doi: 10.1007/BF01143058. [DOI] [PubMed] [Google Scholar]
- Stephens M., Talary M. S., Pethig R., Burnett A. K., Mills K. I. The dielectrophoresis enrichment of CD34+ cells from peripheral blood stem cell harvests. Bone Marrow Transplant. 1996 Oct;18(4):777–782. [PubMed] [Google Scholar]
- Talary M. S., Mills K. I., Hoy T., Burnett A. K., Pethig R. Dielectrophoretic separation and enrichment of CD34+ cell subpopulation from bone marrow and peripheral blood stem cells. Med Biol Eng Comput. 1995 Mar;33(2):235–237. doi: 10.1007/BF02523050. [DOI] [PubMed] [Google Scholar]
- Wang X. B., Vykoukal J., Becker F. F., Gascoyne P. R. Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation. Biophys J. 1998 May;74(5):2689–2701. doi: 10.1016/S0006-3495(98)77975-5. [DOI] [PMC free article] [PubMed] [Google Scholar]