Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Aug;77(2):645–654. doi: 10.1016/S0006-3495(99)76920-1

Conformational equilibria of alkanes in aqueous solution: relationship to water structure near hydrophobic solutes.

H S Ashbaugh 1, S Garde 1, G Hummer 1, E W Kaler 1, M E Paulaitis 1
PMCID: PMC1300360  PMID: 10423414

Abstract

Conformational free energies of butane, pentane, and hexane in water are calculated from molecular simulations with explicit waters and from a simple molecular theory in which the local hydration structure is estimated based on a proximity approximation. This proximity approximation uses only the two nearest carbon atoms on the alkane to predict the local water density at a given point in space. Conformational free energies of hydration are subsequently calculated using a free energy perturbation method. Quantitative agreement is found between the free energies obtained from simulations and theory. Moreover, free energy calculations using this proximity approximation are approximately four orders of magnitude faster than those based on explicit water simulations. Our results demonstrate the accuracy and utility of the proximity approximation for predicting water structure as the basis for a quantitative description of n-alkane conformational equilibria in water. In addition, the proximity approximation provides a molecular foundation for extending predictions of water structure and hydration thermodynamic properties of simple hydrophobic solutes to larger clusters or assemblies of hydrophobic solutes.

Full Text

The Full Text of this article is available as a PDF (128.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashbaugh H. S., Kaler E. W., Paulaitis M. E. Hydration and conformational equilibria of simple hydrophobic and amphiphilic solutes. Biophys J. 1998 Aug;75(2):755–768. doi: 10.1016/S0006-3495(98)77565-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cheng Y. K., Rossky P. J. Surface topography dependence of biomolecular hydrophobic hydration. Nature. 1998 Apr 16;392(6677):696–699. doi: 10.1038/33653. [DOI] [PubMed] [Google Scholar]
  3. Chothia C. Hydrophobic bonding and accessible surface area in proteins. Nature. 1974 Mar 22;248(446):338–339. doi: 10.1038/248338a0. [DOI] [PubMed] [Google Scholar]
  4. Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  5. García A. E., Hummer G., Soumpasis D. M. Hydration of an alpha-helical peptide: comparison of theory and molecular dynamics simulation. Proteins. 1997 Apr;27(4):471–480. [PubMed] [Google Scholar]
  6. Garde S., García A. E., Pratt L. R., Hummer G. Temperature dependence of the solubility of non-polar gases in water. Biophys Chem. 1999 Apr 5;78(1-2):21–32. doi: 10.1016/s0301-4622(99)00018-6. [DOI] [PubMed] [Google Scholar]
  7. Garde S, Hummer G, García AE, Paulaitis ME, Pratt LR. Origin of Entropy Convergence in Hydrophobic Hydration and Protein Folding. Phys Rev Lett. 1996 Dec 9;77(24):4966–4968. doi: 10.1103/PhysRevLett.77.4966. [DOI] [PubMed] [Google Scholar]
  8. Garde S, Hummer G, García AE, Pratt LR, Paulaitis ME. Hydrophobic hydration: Inhomogeneous water structure near nonpolar molecular solutes. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 May;53(5):R4310–R4313. doi: 10.1103/physreve.53.r4310. [DOI] [PubMed] [Google Scholar]
  9. Hummer G., García A. E., Soumpasis D. M. Hydration of nucleic acid fragments: comparison of theory and experiment for high-resolution crystal structures of RNA, DNA, and DNA-drug complexes. Biophys J. 1995 May;68(5):1639–1652. doi: 10.1016/S0006-3495(95)80381-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hummer G., Garde S., García A. E., Paulaitis M. E., Pratt L. R. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1552–1555. doi: 10.1073/pnas.95.4.1552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hummer G., Garde S., García A. E., Pohorille A., Pratt L. R. An information theory model of hydrophobic interactions. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8951–8955. doi: 10.1073/pnas.93.17.8951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hummer G, Soumpasis DM. Computation of the water density distribution at the ice-water interface using the potentials-of-mean-force expansion. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Jan;49(1):591–596. doi: 10.1103/physreve.49.591. [DOI] [PubMed] [Google Scholar]
  13. Hummer G, Soumpasis DM. Statistical mechanical treatment of the structural hydration of biological macromolecules: Results for B-DNA. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Dec;50(6):5085–5095. doi: 10.1103/physreve.50.5085. [DOI] [PubMed] [Google Scholar]
  14. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  15. Klement R., Soumpasis D. M., Jovin T. M. Computation of ionic distributions around charged biomolecular structures: results for right-handed and left-handed DNA. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4631–4635. doi: 10.1073/pnas.88.11.4631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  17. Makarov V. A., Andrews B. K., Pettitt B. M. Reconstructing the protein-water interface. Biopolymers. 1998 Jun;45(7):469–478. doi: 10.1002/(SICI)1097-0282(199806)45:7<469::AID-BIP1>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  18. Mezei M., Beveridge D. L. Structural chemistry of biomolecular hydration via computer simulation: the proximity criterion. Methods Enzymol. 1986;127:21–47. doi: 10.1016/0076-6879(86)27005-6. [DOI] [PubMed] [Google Scholar]
  19. Pettitt B. M., Makarov V. A., Andrews B. K. Protein hydration density: theory, simulations and crystallography. Curr Opin Struct Biol. 1998 Apr;8(2):218–221. doi: 10.1016/s0959-440x(98)80042-0. [DOI] [PubMed] [Google Scholar]
  20. Pohorille A., Pratt L. R. Cavities in molecular liquids and the theory of hydrophobic solubilities. J Am Chem Soc. 1990;112(13):5066–5074. doi: 10.1021/ja00169a011. [DOI] [PubMed] [Google Scholar]
  21. Pratt L. R., Pohorille A. Theory of hydrophobicity: transient cavities in molecular liquids. Proc Natl Acad Sci U S A. 1992 Apr;89:2995–2999. doi: 10.1073/pnas.89.7.2995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reynolds J. A., Gilbert D. B., Tanford C. Empirical correlation between hydrophobic free energy and aqueous cavity surface area. Proc Natl Acad Sci U S A. 1974 Aug;71(8):2925–2927. doi: 10.1073/pnas.71.8.2925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  24. Soumpasis D. M. Statistical mechanics of the B----Z transition of DNA: contribution of diffuse ionic interactions. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5116–5120. doi: 10.1073/pnas.81.16.5116. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES