Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Aug;77(2):655–665. doi: 10.1016/S0006-3495(99)76921-3

Oscillatory behavior of a simple kinetic model for proteolysis during cell invasion.

H Berry 1, V Larreta-Garde 1
PMCID: PMC1300361  PMID: 10423415

Abstract

Extracellular proteolysis during cell invasion is thought to be tightly organized, both temporally and spatially. This work presents a simple kinetic model that describes the interactions between extracellular matrix (ECM) proteins, proteinases, proteolytic fragments, and integrins. Nonmonotonous behavior arises from enzyme de novo synthesis consecutive to integrin binding to fragments or entire proteins. The model has been simulated using realistic values for kinetic constants and protein concentrations, with fibronectin as the ECM protein. The simulations show damped oscillations of integrin-complex concentrations, indicating alternation of maximal adhesion periods with maximal mobility periods. Comparisons with experimental data from the literature confirm the similarity between this system behavior and cell invasion. The influences on the system of cryptic functions of ECM proteins, proteinase inhibitors, and soluble antiadhesive peptides were examined. The first critical parameter for oscillation is the discrepancy between integrin affinity for intact ECM proteins and the respective proteolytic fragments, thus emphasizing the importance of cryptic functions of ECM proteins in cell invasion. Another critical parameter is the ratio between proteinase and the initial ECM protein concentration. These results suggest new insights into the organization of the ECM degradation during cell invasion.

Full Text

The Full Text of this article is available as a PDF (147.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama S. K., Hasegawa E., Hasegawa T., Yamada K. M. The interaction of fibronectin fragments with fibroblastic cells. J Biol Chem. 1985 Oct 25;260(24):13256–13260. [PubMed] [Google Scholar]
  2. Akiyama S. K., Yamada K. M. The interaction of plasma fibronectin with fibroblastic cells in suspension. J Biol Chem. 1985 Apr 10;260(7):4492–4500. [PubMed] [Google Scholar]
  3. Aota S., Nagai T., Olden K., Akiyama S. K., Yamada K. M. Fibronectin and integrins in cell adhesion and migration. Biochem Soc Trans. 1991 Nov;19(4):830–835. doi: 10.1042/bst0190830. [DOI] [PubMed] [Google Scholar]
  4. Assoian R. K. Anchorage-dependent cell cycle progression. J Cell Biol. 1997 Jan 13;136(1):1–4. doi: 10.1083/jcb.136.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bafetti L. M., Young T. N., Itoh Y., Stack M. S. Intact vitronectin induces matrix metalloproteinase-2 and tissue inhibitor of metalloproteinases-2 expression and enhanced cellular invasion by melanoma cells. J Biol Chem. 1998 Jan 2;273(1):143–149. doi: 10.1074/jbc.273.1.143. [DOI] [PubMed] [Google Scholar]
  6. Basbaum C. B., Werb Z. Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr Opin Cell Biol. 1996 Oct;8(5):731–738. doi: 10.1016/s0955-0674(96)80116-5. [DOI] [PubMed] [Google Scholar]
  7. Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
  8. Borchers A. H., Sanders L. A., Powell M. B., Bowden G. T. Melanocyte mediated paracrine induction of extracellular matrix degrading proteases in squamous cell carcinoma cells. Exp Cell Res. 1997 Feb 25;231(1):61–65. doi: 10.1006/excr.1996.3449. [DOI] [PubMed] [Google Scholar]
  9. Brooks P. C., Strömblad S., Sanders L. C., von Schalscha T. L., Aimes R. T., Stetler-Stevenson W. G., Quigley J. P., Cheresh D. A. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell. 1996 May 31;85(5):683–693. doi: 10.1016/s0092-8674(00)81235-0. [DOI] [PubMed] [Google Scholar]
  10. Choquet D., Felsenfeld D. P., Sheetz M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell. 1997 Jan 10;88(1):39–48. doi: 10.1016/s0092-8674(00)81856-5. [DOI] [PubMed] [Google Scholar]
  11. Cockett M. I., Murphy G., Birch M. L., O'Connell J. P., Crabbe T., Millican A. T., Hart I. R., Docherty A. J. Matrix metalloproteinases and metastatic cancer. Biochem Soc Symp. 1998;63:295–313. [PubMed] [Google Scholar]
  12. Coevoet M. A., Hervagault J. F. Irreversible metabolic transitions: the glucose 6-phosphate metabolism in yeast cell-free extracts. Biochem Biophys Res Commun. 1997 May 8;234(1):162–166. doi: 10.1006/bbrc.1997.6611. [DOI] [PubMed] [Google Scholar]
  13. Defilippi P., Venturino M., Gulino D., Duperray A., Boquet P., Fiorentini C., Volpe G., Palmieri M., Silengo L., Tarone G. Dissection of pathways implicated in integrin-mediated actin cytoskeleton assembly. Involvement of protein kinase C, Rho GTPase, and tyrosine phosphorylation. J Biol Chem. 1997 Aug 29;272(35):21726–21734. doi: 10.1074/jbc.272.35.21726. [DOI] [PubMed] [Google Scholar]
  14. Denis L. J., Verweij J. Matrix metalloproteinase inhibitors: present achievements and future prospects. Invest New Drugs. 1997;15(3):175–185. doi: 10.1023/a:1005855905442. [DOI] [PubMed] [Google Scholar]
  15. DiMilla P. A., Barbee K., Lauffenburger D. A. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J. 1991 Jul;60(1):15–37. doi: 10.1016/S0006-3495(91)82027-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fukai F., Iso T., Sekiguchi K., Miyatake N., Tsugita A., Katayama T. An amino-terminal fibronectin fragment stimulates the differentiation of ST-13 preadipocytes. Biochemistry. 1993 Jun 8;32(22):5746–5751. doi: 10.1021/bi00073a004. [DOI] [PubMed] [Google Scholar]
  17. Fukai F., Ohtaki M., Fujii N., Yajima H., Ishii T., Nishizawa Y., Miyazaki K., Katayama T. Release of biological activities from quiescent fibronectin by a conformational change and limited proteolysis by matrix metalloproteinases. Biochemistry. 1995 Sep 12;34(36):11453–11459. doi: 10.1021/bi00036a018. [DOI] [PubMed] [Google Scholar]
  18. Fukai F., Takahashi H., Habu Y., Kubushiro N., Katayama T. Fibronectin harbors anticell adhesive activity. Biochem Biophys Res Commun. 1996 Mar 18;220(2):394–398. doi: 10.1006/bbrc.1996.0416. [DOI] [PubMed] [Google Scholar]
  19. Giannelli G., Falk-Marzillier J., Schiraldi O., Stetler-Stevenson W. G., Quaranta V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997 Jul 11;277(5323):225–228. doi: 10.1126/science.277.5323.225. [DOI] [PubMed] [Google Scholar]
  20. Goldbeter A., Decroly O., Li Y., Martiel J. L., Moran F. Finding complex oscillatory phenomena in biochemical systems. An empirical approach. Biophys Chem. 1988 Feb;29(1-2):211–217. doi: 10.1016/0301-4622(88)87040-6. [DOI] [PubMed] [Google Scholar]
  21. Guo H., Zucker S., Gordon M. K., Toole B. P., Biswas C. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J Biol Chem. 1997 Jan 3;272(1):24–27. [PubMed] [Google Scholar]
  22. Heino J. Biology of tumor cell invasion: interplay of cell adhesion and matrix degradation. Int J Cancer. 1996 Mar 15;65(6):717–722. doi: 10.1002/(SICI)1097-0215(19960315)65:6<717::AID-IJC1>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  23. Homandberg G. A., Hui F., Wen C., Purple C., Bewsey K., Koepp H., Huch K., Harris A. Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem J. 1997 Feb 1;321(Pt 3):751–757. doi: 10.1042/bj3210751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Huhtala P., Humphries M. J., McCarthy J. B., Tremble P. M., Werb Z., Damsky C. H. Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol. 1995 May;129(3):867–879. doi: 10.1083/jcb.129.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hulboy D. L., Rudolph L. A., Matrisian L. M. Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod. 1997 Jan;3(1):27–45. doi: 10.1093/molehr/3.1.27. [DOI] [PubMed] [Google Scholar]
  26. Huttenlocher A., Ginsberg M. H., Horwitz A. F. Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J Cell Biol. 1996 Sep;134(6):1551–1562. doi: 10.1083/jcb.134.6.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Huttenlocher A., Palecek S. P., Lu Q., Zhang W., Mellgren R. L., Lauffenburger D. A., Ginsberg M. H., Horwitz A. F. Regulation of cell migration by the calcium-dependent protease calpain. J Biol Chem. 1997 Dec 26;272(52):32719–32722. doi: 10.1074/jbc.272.52.32719. [DOI] [PubMed] [Google Scholar]
  28. Khan K. M., Falcone D. J. Role of laminin in matrix induction of macrophage urokinase-type plasminogen activator and 92-kDa metalloproteinase expression. J Biol Chem. 1997 Mar 28;272(13):8270–8275. doi: 10.1074/jbc.272.13.8270. [DOI] [PubMed] [Google Scholar]
  29. Kindzelskii A. L., Zhou M. J., Haugland R. P., Boxer L. A., Petty H. R. Oscillatory pericellular proteolysis and oxidant deposition during neutrophil locomotion. Biophys J. 1998 Jan;74(1):90–97. doi: 10.1016/S0006-3495(98)77770-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Klemke R. L., Cai S., Giannini A. L., Gallagher P. J., de Lanerolle P., Cheresh D. A. Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol. 1997 Apr 21;137(2):481–492. doi: 10.1083/jcb.137.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. LaFlamme S. E., Auer K. L. Integrin signaling. Semin Cancer Biol. 1996 Jun;7(3):111–118. doi: 10.1006/scbi.1996.0016. [DOI] [PubMed] [Google Scholar]
  32. Lauffenburger D. A. Cell motility. Making connections count. Nature. 1996 Oct 3;383(6599):390–391. doi: 10.1038/383390a0. [DOI] [PubMed] [Google Scholar]
  33. Law D. A., Nannizzi-Alaimo L., Phillips D. R. Outside-in integrin signal transduction. Alpha IIb beta 3-(GP IIb IIIa) tyrosine phosphorylation induced by platelet aggregation. J Biol Chem. 1996 May 3;271(18):10811–10815. doi: 10.1074/jbc.271.18.10811. [DOI] [PubMed] [Google Scholar]
  34. Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. doi: 10.1016/0092-8674(91)90642-c. [DOI] [PubMed] [Google Scholar]
  35. Nagahara S., Matsuda T. Cell-substrate and cell-cell interactions differently regulate cytoskeletal and extracellular matrix protein gene expression. J Biomed Mater Res. 1996 Dec;32(4):677–686. doi: 10.1002/(SICI)1097-4636(199612)32:4<677::AID-JBM22>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  36. Nakahara H., Howard L., Thompson E. W., Sato H., Seiki M., Yeh Y., Chen W. T. Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7959–7964. doi: 10.1073/pnas.94.15.7959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. doi: 10.1098/rspb.1998.0582. [DOI] [PMC free article] [Google Scholar]
  38. Palecek S. P., Loftus J. C., Ginsberg M. H., Lauffenburger D. A., Horwitz A. F. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature. 1997 Feb 6;385(6616):537–540. doi: 10.1038/385537a0. [DOI] [PubMed] [Google Scholar]
  39. Price J. T., Bonovich M. T., Kohn E. C. The biochemistry of cancer dissemination. Crit Rev Biochem Mol Biol. 1997;32(3):175–253. doi: 10.3109/10409239709082573. [DOI] [PubMed] [Google Scholar]
  40. Ruoslahti E. Fibronectin and its receptors. Annu Rev Biochem. 1988;57:375–413. doi: 10.1146/annurev.bi.57.070188.002111. [DOI] [PubMed] [Google Scholar]
  41. Schlaepfer D. D., Hunter T. Focal adhesion kinase overexpression enhances ras-dependent integrin signaling to ERK2/mitogen-activated protein kinase through interactions with and activation of c-Src. J Biol Chem. 1997 May 16;272(20):13189–13195. doi: 10.1074/jbc.272.20.13189. [DOI] [PubMed] [Google Scholar]
  42. Sudbeck B. D., Pilcher B. K., Welgus H. G., Parks W. C. Induction and repression of collagenase-1 by keratinocytes is controlled by distinct components of different extracellular matrix compartments. J Biol Chem. 1997 Aug 29;272(35):22103–22110. doi: 10.1074/jbc.272.35.22103. [DOI] [PubMed] [Google Scholar]
  43. Tamura M., Gu J., Matsumoto K., Aota S., Parsons R., Yamada K. M. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science. 1998 Jun 5;280(5369):1614–1617. doi: 10.1126/science.280.5369.1614. [DOI] [PubMed] [Google Scholar]
  44. Taylor K. B., Windsor L. J., Caterina N. C., Bodden M. K., Engler J. A. The mechanism of inhibition of collagenase by TIMP-1. J Biol Chem. 1996 Sep 27;271(39):23938–23945. doi: 10.1074/jbc.271.39.23938. [DOI] [PubMed] [Google Scholar]
  45. Ugarova T. P., Ljubimov A. V., Deng L., Plow E. F. Proteolysis regulates exposure of the IIICS-1 adhesive sequence in plasma fibronectin. Biochemistry. 1996 Aug 20;35(33):10913–10921. doi: 10.1021/bi960717s. [DOI] [PubMed] [Google Scholar]
  46. Vassalli J. D., Pepper M. S. Tumour biology. Membrane proteases in focus. Nature. 1994 Jul 7;370(6484):14–15. doi: 10.1038/370014a0. [DOI] [PubMed] [Google Scholar]
  47. Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell. 1997 Nov 14;91(4):439–442. doi: 10.1016/s0092-8674(00)80429-8. [DOI] [PubMed] [Google Scholar]
  48. Werb Z., Tremble P. M., Behrendtsen O., Crowley E., Damsky C. H. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol. 1989 Aug;109(2):877–889. doi: 10.1083/jcb.109.2.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wu C. Roles of integrins in fibronectin matrix assembly. Histol Histopathol. 1997 Jan;12(1):233–240. [PubMed] [Google Scholar]
  50. Xiao Y., Truskey G. A. Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys J. 1996 Nov;71(5):2869–2884. doi: 10.1016/S0006-3495(96)79484-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Xie D., Homandberg G. A. Fibronectin fragments bind to and penetrate cartilage tissue resulting in proteinase expression and cartilage damage. Biochim Biophys Acta. 1993 Sep 8;1182(2):189–196. doi: 10.1016/0925-4439(93)90140-v. [DOI] [PubMed] [Google Scholar]
  52. Yamada K. M. Integrin signaling. Matrix Biol. 1997 Oct;16(4):137–141. doi: 10.1016/s0945-053x(97)90001-9. [DOI] [PubMed] [Google Scholar]
  53. Yao M., Zhou X. D., Zha X. L., Shi D. R., Fu J., He J. Y., Lu H. F., Tang Z. Y. Expression of the integrin alpha5 subunit and its mediated cell adhesion in hepatocellular carcinoma. J Cancer Res Clin Oncol. 1997;123(8):435–440. doi: 10.1007/BF01372547. [DOI] [PubMed] [Google Scholar]
  54. Yebra M., Parry G. C., Strömblad S., Mackman N., Rosenberg S., Mueller B. M., Cheresh D. A. Requirement of receptor-bound urokinase-type plasminogen activator for integrin alphavbeta5-directed cell migration. J Biol Chem. 1996 Nov 15;271(46):29393–29399. doi: 10.1074/jbc.271.46.29393. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES