Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Aug;77(2):739–746. doi: 10.1016/S0006-3495(99)76928-6

Distinctly different interactions of anesthetic and nonimmobilizer with transmembrane channel peptides.

P Tang 1, J Hu 1, S Liachenko 1, Y Xu 1
PMCID: PMC1300368  PMID: 10423422

Abstract

Although it plays no clinical role in general anesthesia, gramicidin A, a transmembrane channel peptide, provides an excellent model for studying the specific interaction between volatile anesthetics and membrane proteins at the molecular level. We show here that a pair of structurally similar volatile anesthetic and nonimmobilizer (nonanesthetic), 1-chloro-1,2,2-trifluorocyclobutane (F3) and 1, 2-dichlorohexafluorocyclobutane (F6), respectively, interacts differently with the transmembrane peptide. With 400 microM gramicidin A in a vesicle suspension of 60 mM phosphatidylcholine-phosphatidylglycerol (PC/PG), the intermolecular cross-relaxation rate constants between (19)F of F3 and (1)H in the chemical shift regions for the indole and backbone amide protons were 0.0106 +/- 0.0007 (n = 12) and 0.0105 +/- 0.0014 (n = 8) s(-1), respectively. No cross-relaxation was measurable between (19)F of F6 and protons in these regions. Sodium transport study showed that with 75 microM gramicidin A in a vesicle suspension of 66 mM PC/PG, F3 increased the (23)Na apparent efflux rate constant from 149.7 +/- 7.2 of control (n = 3) to 191.7 +/- 12.2 s(-1) (n = 3), and the apparent influx rate constant from 182.1 +/- 15.4 to 222.8 +/- 21.7 s(-1) (n = 3). In contrast, F6 had no effects on either influx or efflux rate. It is concluded that the ability of general anesthetics to interact with amphipathic residues near the peptide-lipid-water interface and the inability of nonimmobilizer to do the same may represent some characteristics of anesthetic-protein interaction that are of importance to general anesthesia.

Full Text

The Full Text of this article is available as a PDF (115.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys J. 1983 Feb;41(2):119–133. doi: 10.1016/S0006-3495(83)84414-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arseniev A. S., Barsukov I. L., Bystrov V. F., Lomize A. L., Ovchinnikov YuA 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 1985 Jul 8;186(2):168–174. doi: 10.1016/0014-5793(85)80702-x. [DOI] [PubMed] [Google Scholar]
  3. Bradley R. J., Urry D. W., Parenti-Castelli G., Lenaz G. Effects of halothane on channel activity of N-acetyl gramicidin. Biochem Biophys Res Commun. 1981 Aug 14;101(3):963–969. doi: 10.1016/0006-291x(81)91843-x. [DOI] [PubMed] [Google Scholar]
  4. Buchet R., Sandorfy C., Trapane T. L., Urry D. W. Infrared spectroscopic studies on gramicidin ion-channels: relation to the mechanisms of anesthesia. Biochim Biophys Acta. 1985 Nov 21;821(1):8–16. doi: 10.1016/0005-2736(85)90147-6. [DOI] [PubMed] [Google Scholar]
  5. Buster D. C., Hinton J. F., Millett F. S., Shungu D. C. 23Na-nuclear magnetic resonance investigation of gramicidin-induced ion transport through membranes under equilibrium conditions. Biophys J. 1988 Feb;53(2):145–152. doi: 10.1016/S0006-3495(88)83076-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cafiso D. S. Dipole potentials and spontaneous curvature: membrane properties that could mediate anesthesia. Toxicol Lett. 1998 Nov 23;100-101:431–439. doi: 10.1016/s0378-4274(98)00217-3. [DOI] [PubMed] [Google Scholar]
  7. Cross T. A. Solid-state nuclear magnetic resonance characterization of gramicidin channel structure. Methods Enzymol. 1997;289:672–696. doi: 10.1016/s0076-6879(97)89070-2. [DOI] [PubMed] [Google Scholar]
  8. Cubero E., Luque F. J., Orozco M. Is polarization important in cation-pi interactions? Proc Natl Acad Sci U S A. 1998 May 26;95(11):5976–5980. doi: 10.1073/pnas.95.11.5976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eckenhoff R. G., Johansson J. S. Molecular interactions between inhaled anesthetics and proteins. Pharmacol Rev. 1997 Dec;49(4):343–367. [PubMed] [Google Scholar]
  10. Finkelstein A., Andersen O. S. The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport. J Membr Biol. 1981 Apr 30;59(3):155–171. doi: 10.1007/BF01875422. [DOI] [PubMed] [Google Scholar]
  11. Forman S. A., Raines D. E. Nonanesthetic volatile drugs obey the Meyer-Overton correlation in two molecular protein site models. Anesthesiology. 1998 Jun;88(6):1535–1548. doi: 10.1097/00000542-199806000-00018. [DOI] [PubMed] [Google Scholar]
  12. Franks N. P., Lieb W. R. An anesthetic-sensitive superfamily of neurotransmitter-gated ion channels. J Clin Anesth. 1996 May;8(3 Suppl):3S–7S. doi: 10.1016/s0952-8180(96)90004-5. [DOI] [PubMed] [Google Scholar]
  13. Franks N. P., Lieb W. R. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994 Feb 17;367(6464):607–614. doi: 10.1038/367607a0. [DOI] [PubMed] [Google Scholar]
  14. Goulian M., Mesquita O. N., Fygenson D. K., Nielsen C., Andersen O. S., Libchaber A. Gramicidin channel kinetics under tension. Biophys J. 1998 Jan;74(1):328–337. doi: 10.1016/S0006-3495(98)77790-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hinton J. F. Cation-binding location and hydrogen-exchange sites for gramicidin in SDS micelles using NOESY NMR. J Magn Reson B. 1996 Jul;112(1):26–31. doi: 10.1006/jmrb.1996.0105. [DOI] [PubMed] [Google Scholar]
  16. Hinton J. F., Newkirk D. K., Fletcher T. G., Shungu D. C. Application of the magnetization-inversion-transfer technique to the transport of 7Li+, 23Na+, and 39K+ ions through the gramicidin channel and the M2 delta transmembrane domain of the nicotinic acetylcholine receptor. J Magn Reson B. 1994 Sep;105(1):11–16. doi: 10.1006/jmrb.1994.1093. [DOI] [PubMed] [Google Scholar]
  17. Hu W., Cross T. A. Tryptophan hydrogen bonding and electric dipole moments: functional roles in the gramicidin channel and implications for membrane proteins. Biochemistry. 1995 Oct 31;34(43):14147–14155. doi: 10.1021/bi00043a020. [DOI] [PubMed] [Google Scholar]
  18. Hu W., Lee K. C., Cross T. A. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Biochemistry. 1993 Jul 13;32(27):7035–7047. doi: 10.1021/bi00078a032. [DOI] [PubMed] [Google Scholar]
  19. Huang P., Perez J. J., Loew G. H. Molecular dynamics simulations of phospholipid bilayers. J Biomol Struct Dyn. 1994 Apr;11(5):927–956. doi: 10.1080/07391102.1994.10508045. [DOI] [PubMed] [Google Scholar]
  20. Ionescu P., Eger E. I., 2nd, Trudell J. Direct determination of oil/saline partition coefficients. Anesth Analg. 1994 Dec;79(6):1056–1058. doi: 10.1213/00000539-199412000-00006. [DOI] [PubMed] [Google Scholar]
  21. Kendig J. J., Kodde A., Gibbs L. M., Ionescu P., Eger E. I., 2nd Correlates of anesthetic properties in isolated spinal cord: cyclobutanes. Eur J Pharmacol. 1994 Nov 3;264(3):427–436. doi: 10.1016/0014-2999(94)00499-4. [DOI] [PubMed] [Google Scholar]
  22. Ketchem R., Roux B., Cross T. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure. 1997 Dec 15;5(12):1655–1669. doi: 10.1016/s0969-2126(97)00312-2. [DOI] [PubMed] [Google Scholar]
  23. Killian J. A., Trouard T. P., Greathouse D. V., Chupin V., Lindblom G. A general method for the preparation of mixed micelles of hydrophobic peptides and sodium dodecyl sulphate. FEBS Lett. 1994 Jul 11;348(2):161–165. doi: 10.1016/0014-5793(94)00594-x. [DOI] [PubMed] [Google Scholar]
  24. Koblin D. D., Chortkoff B. S., Laster M. J., Eger E. I., 2nd, Halsey M. J., Ionescu P. Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth Analg. 1994 Dec;79(6):1043–1048. doi: 10.1213/00000539-199412000-00004. [DOI] [PubMed] [Google Scholar]
  25. Le Guernevé C., Seigneuret M. High-resolution mono- and multidimensional magic angle spinning 1H nuclear magnetic resonance of membrane peptides in nondeuterated lipid membranes and H2O. Biophys J. 1996 Nov;71(5):2633–2644. doi: 10.1016/S0006-3495(96)79455-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
  27. Meulendijks G. H., Sonderkamp T., Dubois J. E., Nielen R. J., Kremers J. A., Buck H. M. The different influences of ether and ester phospholipids on the conformation of gramicidin A. A molecular modelling study. Biochim Biophys Acta. 1989 Mar 13;979(3):321–330. doi: 10.1016/0005-2736(89)90252-6. [DOI] [PubMed] [Google Scholar]
  28. Mihic S. J., Ye Q., Wick M. J., Koltchine V. V., Krasowski M. D., Finn S. E., Mascia M. P., Valenzuela C. F., Hanson K. K., Greenblatt E. P. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature. 1997 Sep 25;389(6649):385–389. doi: 10.1038/38738. [DOI] [PubMed] [Google Scholar]
  29. Mobashery N., Nielsen C., Andersen O. S. The conformational preference of gramicidin channels is a function of lipid bilayer thickness. FEBS Lett. 1997 Jul 21;412(1):15–20. doi: 10.1016/s0014-5793(97)00709-6. [DOI] [PubMed] [Google Scholar]
  30. Myers V. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. Biochim Biophys Acta. 1972 Aug 9;274(2):313–322. doi: 10.1016/0005-2736(72)90179-4. [DOI] [PubMed] [Google Scholar]
  31. North C., Cafiso D. S. Contrasting membrane localization and behavior of halogenated cyclobutanes that follow or violate the Meyer-Overton hypothesis of general anesthetic potency. Biophys J. 1997 Apr;72(4):1754–1761. doi: 10.1016/S0006-3495(97)78821-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Raines D. E. Anesthetic and nonanesthetic halogenated volatile compounds have dissimilar activities on nicotinic acetylcholine receptor desensitization kinetics. Anesthesiology. 1996 Mar;84(3):663–671. doi: 10.1097/00000542-199603000-00022. [DOI] [PubMed] [Google Scholar]
  33. Scarlata S. F. Effect of increased chain packing on gramicidin-lipid interactions. Biochemistry. 1991 Oct 15;30(41):9853–9859. doi: 10.1021/bi00105a007. [DOI] [PubMed] [Google Scholar]
  34. Silver M. S., Joseph R. I., Chen C. N., Sank V. J., Hoult D. I. Selective population inversion in NMR. Nature. 1984 Aug 23;310(5979):681–683. doi: 10.1038/310681a0. [DOI] [PubMed] [Google Scholar]
  35. Tang P., Simplaceanu V., Xu Y. Structural consequences of anesthetic and nonimmobilizer interaction with gramicidin A channels. Biophys J. 1999 May;76(5):2346–2350. doi: 10.1016/S0006-3495(99)77391-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tang P., Yan B., Xu Y. Different distribution of fluorinated anesthetics and nonanesthetics in model membrane: a 19F NMR study. Biophys J. 1997 Apr;72(4):1676–1682. doi: 10.1016/S0006-3495(97)78813-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Trudell J. R., Koblin D. D., Eger E. I., 2nd A molecular description of how noble gases and nitrogen bind to a model site of anesthetic action. Anesth Analg. 1998 Aug;87(2):411–418. doi: 10.1097/00000539-199808000-00034. [DOI] [PubMed] [Google Scholar]
  38. Urban B. W., Hladky S. B., Haydon D. A. Ion movements in gramicidin pores. An example of single-file transport. Biochim Biophys Acta. 1980 Nov 4;602(2):331–354. doi: 10.1016/0005-2736(80)90316-8. [DOI] [PubMed] [Google Scholar]
  39. Urry D. W. The gramicidin A transmembrane channel: a proposed pi(L,D) helix. Proc Natl Acad Sci U S A. 1971 Mar;68(3):672–676. doi: 10.1073/pnas.68.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Weinstein S., Wallace B. A., Blout E. R., Morrow J. S., Veatch W. Conformation of gramicidin A channel in phospholipid vesicles: a 13C and 19F nuclear magnetic resonance study. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4230–4234. doi: 10.1073/pnas.76.9.4230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Xu Y., Tang P. Amphiphilic sites for general anesthetic action? Evidence from 129Xe-[1H] intermolecular nuclear Overhauser effects. Biochim Biophys Acta. 1997 Jan 14;1323(1):154–162. doi: 10.1016/s0005-2736(96)00184-8. [DOI] [PubMed] [Google Scholar]
  42. Xu Y., Tang P., Liachenko S. Unifying characteristics of sites of anesthetic action revealed by combined use of anesthetics and non-anesthetics. Toxicol Lett. 1998 Nov 23;100-101:347–352. doi: 10.1016/s0378-4274(98)00205-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES