Abstract
Site-3 toxins have been shown to inhibit a component of gating charge (33% of maximum gating charge, Q(max)) in native cardiac Na channels that has been identified with the open-to-inactivated state kinetic transition. To investigate the role of the three outermost arginine amino acid residues in segment 4 domain IV (R1, R2, R3) in gating charge inhibited by site-3 toxins, we recorded ionic and gating currents from human heart Na channels with mutations of the outermost arginines (R1C, R1Q, R2C, and R3C) expressed in fused, mammalian tsA201 cells. All four mutations had ionic currents that activated over the same voltage range with slope factors of their peak conductance-voltage (G-V) relationships similar to those of wild-type channels, although decay of I(Na) was slowest for R1C and R1Q mutant channels and fastest for R3C mutant channels. After Na channel modification by Ap-A toxin, decays of I(Na) were slowed to similar values for all four channel mutants. Toxin modification produced a graded effect on gating charge (Q) of mutant channels, reducing Q(max) by 12% for the R1C and R1Q mutants, by 22% for the R2C mutant, and by 27% for the R3C mutant, only slightly less than the 31% reduction seen for wild-type currents. Consistent with these findings, the relationship of Q(max) to G(max) was significantly shallower for R1 mutants than for R2C and R3C mutant Na channels. These data suggest that site-3 toxins primarily inhibit gating charge associated with movement of the S4 in domain IV, and that the outermost arginine contributes the largest amount to channel gating, with other arginines contributing less.
Full Text
The Full Text of this article is available as a PDF (169.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aggarwal S. K., MacKinnon R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron. 1996 Jun;16(6):1169–1177. doi: 10.1016/s0896-6273(00)80143-9. [DOI] [PubMed] [Google Scholar]
- Armstrong C. M., Bezanilla F. Currents related to movement of the gating particles of the sodium channels. Nature. 1973 Apr 13;242(5398):459–461. doi: 10.1038/242459a0. [DOI] [PubMed] [Google Scholar]
- Armstrong C. M. Sodium channels and gating currents. Physiol Rev. 1981 Jul;61(3):644–683. doi: 10.1152/physrev.1981.61.3.644. [DOI] [PubMed] [Google Scholar]
- Benzinger G. R., Drum C. L., Chen L. Q., Kallen R. G., Hanck D. A., Hanck D. Differences in the binding sites of two site-3 sodium channel toxins. Pflugers Arch. 1997 Nov;434(6):742–749. doi: 10.1007/s004240050460. [DOI] [PubMed] [Google Scholar]
- Benzinger G. R., Kyle J. W., Blumenthal K. M., Hanck D. A. A specific interaction between the cardiac sodium channel and site-3 toxin anthopleurin B. J Biol Chem. 1998 Jan 2;273(1):80–84. doi: 10.1074/jbc.273.1.80. [DOI] [PubMed] [Google Scholar]
- Bezanilla F., Perozo E., Papazian D. M., Stefani E. Molecular basis of gating charge immobilization in Shaker potassium channels. Science. 1991 Nov 1;254(5032):679–683. doi: 10.1126/science.1948047. [DOI] [PubMed] [Google Scholar]
- Bezanilla F., Perozo E., Stefani E. Gating of Shaker K+ channels: II. The components of gating currents and a model of channel activation. Biophys J. 1994 Apr;66(4):1011–1021. doi: 10.1016/S0006-3495(94)80882-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bénitah J. P., Ranjan R., Yamagishi T., Janecki M., Tomaselli G. F., Marban E. Molecular motions within the pore of voltage-dependent sodium channels. Biophys J. 1997 Aug;73(2):603–613. doi: 10.1016/S0006-3495(97)78096-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cha A., Ruben P. C., George A. L., Jr, Fujimoto E., Bezanilla F. Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron. 1999 Jan;22(1):73–87. doi: 10.1016/s0896-6273(00)80680-7. [DOI] [PubMed] [Google Scholar]
- Chahine M., George A. L., Jr, Zhou M., Ji S., Sun W., Barchi R. L., Horn R. Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron. 1994 Feb;12(2):281–294. doi: 10.1016/0896-6273(94)90271-2. [DOI] [PubMed] [Google Scholar]
- Chen L. Q., Santarelli V., Horn R., Kallen R. G. A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. J Gen Physiol. 1996 Dec;108(6):549–556. doi: 10.1085/jgp.108.6.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dart C., Leyland M. L., Spencer P. J., Stanfield P. R., Sutcliffe M. J. The selectivity filter of a potassium channel, murine kir2.1, investigated using scanning cysteine mutagenesis. J Physiol. 1998 Aug 15;511(Pt 1):25–32. doi: 10.1111/j.1469-7793.1998.025bi.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Fozzard H. A., Hanck D. A. Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev. 1996 Jul;76(3):887–926. doi: 10.1152/physrev.1996.76.3.887. [DOI] [PubMed] [Google Scholar]
- French R. J., Horn R. Sodium channel gating: models, mimics, and modifiers. Annu Rev Biophys Bioeng. 1983;12:319–356. doi: 10.1146/annurev.bb.12.060183.001535. [DOI] [PubMed] [Google Scholar]
- Gellens M. E., George A. L., Jr, Chen L. Q., Chahine M., Horn R., Barchi R. L., Kallen R. G. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):554–558. doi: 10.1073/pnas.89.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanck D. A., Sheets M. F. Modification of inactivation in cardiac sodium channels: ionic current studies with Anthopleurin-A toxin. J Gen Physiol. 1995 Oct;106(4):601–616. doi: 10.1085/jgp.106.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanck D. A., Sheets M. F. Time-dependent changes in kinetics of Na+ current in single canine cardiac Purkinje cells. Am J Physiol. 1992 Apr;262(4 Pt 2):H1197–H1207. doi: 10.1152/ajpheart.1992.262.4.H1197. [DOI] [PubMed] [Google Scholar]
- Hartmann H. A., Tiedeman A. A., Chen S. F., Brown A. M., Kirsch G. E. Effects of III-IV linker mutations on human heart Na+ channel inactivation gating. Circ Res. 1994 Jul;75(1):114–122. doi: 10.1161/01.res.75.1.114. [DOI] [PubMed] [Google Scholar]
- Hirschberg B., Rovner A., Lieberman M., Patlak J. Transfer of twelve charges is needed to open skeletal muscle Na+ channels. J Gen Physiol. 1995 Dec;106(6):1053–1068. doi: 10.1085/jgp.106.6.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khera P. K., Benzinger G. R., Lipkind G., Drum C. L., Hanck D. A., Blumenthal K. M. Multiple cationic residues of anthopleurin B that determine high affinity and channel isoform discrimination. Biochemistry. 1995 Jul 11;34(27):8533–8541. doi: 10.1021/bi00027a003. [DOI] [PubMed] [Google Scholar]
- Kirsch G. E., Skattebøl A., Possani L. D., Brown A. M. Modification of Na channel gating by an alpha scorpion toxin from Tityus serrulatus. J Gen Physiol. 1989 Jan;93(1):67–83. doi: 10.1085/jgp.93.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kontis K. J., Rounaghi A., Goldin A. L. Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains. J Gen Physiol. 1997 Oct;110(4):391–401. doi: 10.1085/jgp.110.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krafte D. S., Goldin A. L., Auld V. J., Dunn R. J., Davidson N., Lester H. A. Inactivation of cloned Na channels expressed in Xenopus oocytes. J Gen Physiol. 1990 Oct;96(4):689–706. doi: 10.1085/jgp.96.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liman E. R., Tytgat J., Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron. 1992 Nov;9(5):861–871. doi: 10.1016/0896-6273(92)90239-a. [DOI] [PubMed] [Google Scholar]
- MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature. 1991 Mar 21;350(6315):232–235. doi: 10.1038/350232a0. [DOI] [PubMed] [Google Scholar]
- Mannuzzu L. M., Moronne M. M., Isacoff E. Y. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science. 1996 Jan 12;271(5246):213–216. doi: 10.1126/science.271.5246.213. [DOI] [PubMed] [Google Scholar]
- Mitrovic N., George A. L., Jr, Horn R. Independent versus coupled inactivation in sodium channels. Role of the domain 2 S4 segment. J Gen Physiol. 1998 Mar;111(3):451–462. doi: 10.1085/jgp.111.3.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noda M., Shimizu S., Tanabe T., Takai T., Kayano T., Ikeda T., Takahashi H., Nakayama H., Kanaoka Y., Minamino N. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 1984 Nov 8;312(5990):121–127. doi: 10.1038/312121a0. [DOI] [PubMed] [Google Scholar]
- O'Leary M. E., Horn R. Internal block of human heart sodium channels by symmetrical tetra-alkylammoniums. J Gen Physiol. 1994 Sep;104(3):507–522. doi: 10.1085/jgp.104.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Provencher S. W. A Fourier method for the analysis of exponential decay curves. Biophys J. 1976 Jan;16(1):27–41. doi: 10.1016/S0006-3495(76)85660-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richard Benzinger G., Tonkovich G. S., Hanck D. A. Augmentation of recovery from inactivation by site-3 Na channel toxins. A single-channel and whole-cell study of persistent currents. J Gen Physiol. 1999 Feb;113(2):333–346. doi: 10.1085/jgp.113.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers J. C., Qu Y., Tanada T. N., Scheuer T., Catterall W. A. Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J Biol Chem. 1996 Jul 5;271(27):15950–15962. doi: 10.1074/jbc.271.27.15950. [DOI] [PubMed] [Google Scholar]
- Satin J., Kyle J. W., Fan Z., Rogart R., Fozzard H. A., Makielski J. C. Post-repolarization block of cloned sodium channels by saxitoxin: the contribution of pore-region amino acids. Biophys J. 1994 May;66(5):1353–1363. doi: 10.1016/S0006-3495(94)80926-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
- Schoppa N. E., McCormack K., Tanouye M. A., Sigworth F. J. The size of gating charge in wild-type and mutant Shaker potassium channels. Science. 1992 Mar 27;255(5052):1712–1715. doi: 10.1126/science.1553560. [DOI] [PubMed] [Google Scholar]
- Seoh S. A., Sigg D., Papazian D. M., Bezanilla F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron. 1996 Jun;16(6):1159–1167. doi: 10.1016/s0896-6273(00)80142-7. [DOI] [PubMed] [Google Scholar]
- Sheets M. F., Hanck D. A. Gating of skeletal and cardiac muscle sodium channels in mammalian cells. J Physiol. 1999 Jan 15;514(Pt 2):425–436. doi: 10.1111/j.1469-7793.1999.425ae.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheets M. F., Hanck D. A. Voltage-dependent open-state inactivation of cardiac sodium channels: gating current studies with Anthopleurin-A toxin. J Gen Physiol. 1995 Oct;106(4):617–640. doi: 10.1085/jgp.106.4.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheets M. F., Kyle J. W., Krueger S., Hanck D. A. Optimization of a mammalian expression system for the measurement of sodium channel gating currents. Am J Physiol. 1996 Sep;271(3 Pt 1):C1001–C1006. doi: 10.1152/ajpcell.1996.271.3.C1001. [DOI] [PubMed] [Google Scholar]
- Smith-Maxwell C. J., Ledwell J. L., Aldrich R. W. Role of the S4 in cooperativity of voltage-dependent potassium channel activation. J Gen Physiol. 1998 Mar;111(3):399–420. doi: 10.1085/jgp.111.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith-Maxwell C. J., Ledwell J. L., Aldrich R. W. Uncharged S4 residues and cooperativity in voltage-dependent potassium channel activation. J Gen Physiol. 1998 Mar;111(3):421–439. doi: 10.1085/jgp.111.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stühmer W., Conti F., Suzuki H., Wang X. D., Noda M., Yahagi N., Kubo H., Numa S. Structural parts involved in activation and inactivation of the sodium channel. Nature. 1989 Jun 22;339(6226):597–603. doi: 10.1038/339597a0. [DOI] [PubMed] [Google Scholar]
- Thomsen W. J., Catterall W. A. Localization of the receptor site for alpha-scorpion toxins by antibody mapping: implications for sodium channel topology. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10161–10165. doi: 10.1073/pnas.86.24.10161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang N., George A. L., Jr, Horn R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron. 1996 Jan;16(1):113–122. doi: 10.1016/s0896-6273(00)80028-8. [DOI] [PubMed] [Google Scholar]
- Yang N., Horn R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron. 1995 Jul;15(1):213–218. doi: 10.1016/0896-6273(95)90078-0. [DOI] [PubMed] [Google Scholar]
- Zagotta W. N., Hoshi T., Dittman J., Aldrich R. W. Shaker potassium channel gating. II: Transitions in the activation pathway. J Gen Physiol. 1994 Feb;103(2):279–319. doi: 10.1085/jgp.103.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- el-Sherif N., Fozzard H. A., Hanck D. A. Dose-dependent modulation of the cardiac sodium channel by sea anemone toxin ATXII. Circ Res. 1992 Feb;70(2):285–301. doi: 10.1161/01.res.70.2.285. [DOI] [PubMed] [Google Scholar]
