Abstract
Three-dimensional computer modeling is used to further investigate the hypothesis forwarded in the accompanying paper of an evolutionary relationship between four related families of K(+) sympoter proteins and the superfamily of K(+) channel proteins. Atomic-scale models are developed for the transmembrane regions of one member from each of the three more distinct symporter families, i.e., a TrkH protein from Escherichia coli, a KtrB protein from Aquifex aeolicus, and a Trk1,2 protein from Schizosaccharomyces pombe. The portions of the four consecutive M1-P-M2 motifs in the symporters that can be aligned with K(+) channel sequences are modeled directly from the recently determined crystal structure of the KcsA K(+) channel from Streptomyces lividans. The remaining portions are developed using our previously accumulated theoretical modeling criteria and principles. Concurrently, the use of these criteria and principles is further supported by the now verified predictions of our previous K(+) channel modeling efforts and the degree to which they are satisfied by the known structure of the KcsA protein. Thus the observed ability of the portions of the symporter models derived from the KcsA crystal structure to also satisfy the theoretical modeling criteria provides additional support for an evolutionary link with K(+) channel proteins. Efforts to further satisfy the criteria and principles suggest that the symporter proteins from fungi and plants (i.e., Trk1,2 and HKT1) form dimeric and/or tetrameric complexes in the membrane. Furthermore, analysis of the atomic-scale models in relation to the sequence conservation within and between the protein families suggests structural details for previously proposed mechanisms for the linked symport of K(+) with Na(+) and H(+). Suggestions are also given for experiments to test these structures and hypotheses.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowie J. U. Helix packing in membrane proteins. J Mol Biol. 1997 Oct 10;272(5):780–789. doi: 10.1006/jmbi.1997.1279. [DOI] [PubMed] [Google Scholar]
- Chothia C., Levitt M., Richardson D. Helix to helix packing in proteins. J Mol Biol. 1981 Jan 5;145(1):215–250. doi: 10.1016/0022-2836(81)90341-7. [DOI] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
- Clayton R. A., White O., Ketchum K. A., Venter J. C. The first genome from the third domain of life. Nature. 1997 May 29;387(6632):459–462. doi: 10.1038/387459a0. [DOI] [PubMed] [Google Scholar]
- Deckert G., Warren P. V., Gaasterland T., Young W. G., Lenox A. L., Graham D. E., Overbeek R., Snead M. A., Keller M., Aujay M. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature. 1998 Mar 26;392(6674):353–358. doi: 10.1038/32831. [DOI] [PubMed] [Google Scholar]
- Diatloff E., Kumar R., Schachtman D. P. Site directed mutagenesis reduces the Na+ affinity of HKT1, an Na+ energized high affinity K+ transporter. FEBS Lett. 1998 Jul 31;432(1-2):31–36. doi: 10.1016/s0014-5793(98)00833-3. [DOI] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Durell S. R., Guy H. R. Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel. Neuropharmacology. 1996;35(7):761–773. doi: 10.1016/0028-3908(96)00097-4. [DOI] [PubMed] [Google Scholar]
- Durell S. R., Hao Y., Guy H. R. Structural models of the transmembrane region of voltage-gated and other K+ channels in open, closed, and inactivated conformations. J Struct Biol. 1998;121(2):263–284. doi: 10.1006/jsbi.1998.3962. [DOI] [PubMed] [Google Scholar]
- Gaber R. F., Styles C. A., Fink G. R. TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jul;8(7):2848–2859. doi: 10.1128/mcb.8.7.2848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross A., MacKinnon R. Agitoxin footprinting the shaker potassium channel pore. Neuron. 1996 Feb;16(2):399–406. doi: 10.1016/s0896-6273(00)80057-4. [DOI] [PubMed] [Google Scholar]
- Guy H. R., Durell S. R. Developing three-dimensional models of ion channel proteins. Ion Channels. 1996;4:1–40. doi: 10.1007/978-1-4899-1775-1_1. [DOI] [PubMed] [Google Scholar]
- Guy H. R., Durell S. R. Using sequence homology to analyze the structure and function of voltage-gated ion channel proteins. Soc Gen Physiol Ser. 1994;49:197–212. [PubMed] [Google Scholar]
- Göbel U., Sander C., Schneider R., Valencia A. Correlated mutations and residue contacts in proteins. Proteins. 1994 Apr;18(4):309–317. doi: 10.1002/prot.340180402. [DOI] [PubMed] [Google Scholar]
- Heginbotham L., Lu Z., Abramson T., MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J. 1994 Apr;66(4):1061–1067. doi: 10.1016/S0006-3495(94)80887-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ivanov V. T., Laine I. A., Abdulaev N. D., Senyavina L. B., Popov E. M. The physicochemical basis of the functioning of biological membranes: the conformation of valinomycin and its K+ complex in solution. Biochem Biophys Res Commun. 1969 Mar 31;34(6):803–811. doi: 10.1016/0006-291x(69)90251-4. [DOI] [PubMed] [Google Scholar]
- Jardetzky O. Simple allosteric model for membrane pumps. Nature. 1966 Aug 27;211(5052):969–970. doi: 10.1038/211969a0. [DOI] [PubMed] [Google Scholar]
- Ko C. H., Gaber R. F. TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Aug;11(8):4266–4273. doi: 10.1128/mcb.11.8.4266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komiya H., Yeates T. O., Rees D. C., Allen J. P., Feher G. Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: symmetry relations and sequence comparisons between different species. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9012–9016. doi: 10.1073/pnas.85.23.9012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lichtenberg-Fraté H., Reid J. D., Heyer M., Höfer M. The SpTRK gene encodes a potassium-specific transport protein TKHp in Schizosaccharomyces pombe. J Membr Biol. 1996 Jul;152(2):169–181. doi: 10.1007/s002329900095. [DOI] [PubMed] [Google Scholar]
- Lü Q., Miller C. Silver as a probe of pore-forming residues in a potassium channel. Science. 1995 Apr 14;268(5208):304–307. doi: 10.1126/science.7716526. [DOI] [PubMed] [Google Scholar]
- Moczydlowski E. Chemical basis for alkali cation selectivity in potassium-channel proteins. Chem Biol. 1998 Nov;5(11):R291–R301. doi: 10.1016/s1074-5521(98)90288-5. [DOI] [PubMed] [Google Scholar]
- Nakamura T., Yamamuro N., Stumpe S., Unemoto T., Bakker E. P. Cloning of the trkAH gene cluster and characterization of the Trk K(+)-uptake system of Vibrio alginolyticus. Microbiology. 1998 Aug;144(Pt 8):2281–2289. doi: 10.1099/00221287-144-8-2281. [DOI] [PubMed] [Google Scholar]
- Nakamura T., Yuda R., Unemoto T., Bakker E. P. KtrAB, a new type of bacterial K(+)-uptake system from Vibrio alginolyticus. J Bacteriol. 1998 Jul;180(13):3491–3494. doi: 10.1128/jb.180.13.3491-3494.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perozo E., Cortes D. M., Cuello L. G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol. 1998 Jun;5(6):459–469. doi: 10.1038/nsb0698-459. [DOI] [PubMed] [Google Scholar]
- Pinkerton M., Steinrauf L. K., Dawkins P. The molecular structure and some transport properties of valinomycin. Biochem Biophys Res Commun. 1969 May 22;35(4):512–518. doi: 10.1016/0006-291x(69)90376-3. [DOI] [PubMed] [Google Scholar]
- Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
- Rhoads D. B., Epstein W. Cation transport in Escherichia coli. IX. Regulation of K transport. J Gen Physiol. 1978 Sep;72(3):283–295. doi: 10.1085/jgp.72.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubio F., Gassmann W., Schroeder J. I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science. 1995 Dec 8;270(5242):1660–1663. doi: 10.1126/science.270.5242.1660. [DOI] [PubMed] [Google Scholar]
- Rubio F., Schwarz M., Gassmann W., Schroeder J. I. Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance. J Biol Chem. 1999 Mar 12;274(11):6839–6847. doi: 10.1074/jbc.274.11.6839. [DOI] [PubMed] [Google Scholar]
- Schachtman D. P., Schroeder J. I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature. 1994 Aug 25;370(6491):655–658. doi: 10.1038/370655a0. [DOI] [PubMed] [Google Scholar]
- Schlösser A., Meldorf M., Stumpe S., Bakker E. P., Epstein W. TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli. J Bacteriol. 1995 Apr;177(7):1908–1910. doi: 10.1128/jb.177.7.1908-1910.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Su A., Mager S., Mayo S. L., Lester H. A. A multi-substrate single-file model for ion-coupled transporters. Biophys J. 1996 Feb;70(2):762–777. doi: 10.1016/S0006-3495(96)79616-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takase K., Kakinuma S., Yamato I., Konishi K., Igarashi K., Kakinuma Y. Sequencing and characterization of the ntp gene cluster for vacuolar-type Na(+)-translocating ATPase of Enterococcus hirae. J Biol Chem. 1994 Apr 15;269(15):11037–11044. [PubMed] [Google Scholar]
- Tholema N., Bakker E. P., Suzuki A., Nakamura T. Change to alanine of one out of four selectivity filter glycines in KtrB causes a two orders of magnitude decrease in the affinities for both K+ and Na+ of the Na+ dependent K+ uptake system KtrAB from Vibrio alginolyticus. FEBS Lett. 1999 May 7;450(3):217–220. doi: 10.1016/s0014-5793(99)00504-9. [DOI] [PubMed] [Google Scholar]
- Tiwari-Woodruff S. K., Schulteis C. T., Mock A. F., Papazian D. M. Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. Biophys J. 1997 Apr;72(4):1489–1500. doi: 10.1016/S0006-3495(97)78797-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
