Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Aug;77(2):829–841. doi: 10.1016/S0006-3495(99)76935-3

Ultrastructural characterization of peptide-induced membrane fusion and peptide self-assembly in the lipid bilayer.

A S Ulrich 1, W Tichelaar 1, G Förster 1, O Zschörnig 1, S Weinkauf 1, H W Meyer 1
PMCID: PMC1300375  PMID: 10423429

Abstract

The peptide sequence B18, derived from the membrane-associated sea urchin sperm protein bindin, triggers fusion between lipid vesicles. It exhibits many similarities to viral fusion peptides and may have a corresponding function in fertilization. The lipid-peptide and peptide-peptide interactions of B18 are investigated here at the ultrastructural level by electron microscopy and x-ray diffraction. The histidine-rich peptide is shown to self-associate into two distinctly different supramolecular structures, depending on the presence of Zn(2+), which controls its fusogenic activity. In aqueous buffer the peptide per se assembles into beta-sheet amyloid fibrils, whereas in the presence of Zn(2+) it forms smooth globular clusters. When B18 per se is added to uncharged large unilamellar vesicles, they become visibly disrupted by the fibrils, but no genuine fusion is observed. Only in the presence of Zn(2+) does the peptide induce extensive fusion of vesicles, which is evident from their dramatic increase in size. Besides these morphological changes, we observed distinct fibrillar and particulate structures in the bilayer, which are attributed to B18 in either of its two self-assembled forms. We conclude that membrane fusion involves an alpha-helical peptide conformation, which can oligomerize further in the membrane. The role of Zn(2+) is to promote this local helical structure in B18 and to prevent its inactivation as beta-sheet fibrils.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brasseur R., Pillot T., Lins L., Vandekerckhove J., Rosseneu M. Peptides in membranes: tipping the balance of membrane stability. Trends Biochem Sci. 1997 May;22(5):167–171. doi: 10.1016/s0968-0004(97)01047-5. [DOI] [PubMed] [Google Scholar]
  2. Chernomordik L., Kozlov M. M., Zimmerberg J. Lipids in biological membrane fusion. J Membr Biol. 1995 Jul;146(1):1–14. doi: 10.1007/BF00232676. [DOI] [PubMed] [Google Scholar]
  3. Colotto A., Epand R. M. Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayers. Biochemistry. 1997 Jun 24;36(25):7644–7651. doi: 10.1021/bi970382u. [DOI] [PubMed] [Google Scholar]
  4. Davies S. M., Epand R. F., Bradshaw J. P., Epand R. M. Modulation of lipid polymorphism by the feline leukemia virus fusion peptide: implications for the fusion mechanism. Biochemistry. 1998 Apr 21;37(16):5720–5729. doi: 10.1021/bi980227v. [DOI] [PubMed] [Google Scholar]
  5. Davies S. M., Kelly S. M., Price N. C., Bradshaw J. P. Structural plasticity of the feline leukaemia virus fusion peptide: a circular dichroism study. FEBS Lett. 1998 Apr 3;425(3):415–418. doi: 10.1016/s0014-5793(98)00274-9. [DOI] [PubMed] [Google Scholar]
  6. DeAngelis P. L., Glabe C. G. Specific recognition of sulfate esters by bindin, a sperm adhesion protein from sea urchins. Biochim Biophys Acta. 1990 Jan 19;1037(1):100–105. doi: 10.1016/0167-4838(90)90107-q. [DOI] [PubMed] [Google Scholar]
  7. Durell S. R., Martin I., Ruysschaert J. M., Shai Y., Blumenthal R. What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review). Mol Membr Biol. 1997 Jul-Sep;14(3):97–112. doi: 10.3109/09687689709048170. [DOI] [PubMed] [Google Scholar]
  8. Epand R. M., Cheetham J. J., Epand R. F., Yeagle P. L., Richardson C. D., Rockwell A., Degrado W. F. Peptide models for the membrane destabilizing actions of viral fusion proteins. Biopolymers. 1992 Apr;32(4):309–314. doi: 10.1002/bip.360320403. [DOI] [PubMed] [Google Scholar]
  9. Forloni G., Tagliavini F., Bugiani O., Salmona M. Amyloid in Alzheimer's disease and prion-related encephalopathies: studies with synthetic peptides. Prog Neurobiol. 1996 Jul;49(4):287–315. doi: 10.1016/0301-0082(96)00013-5. [DOI] [PubMed] [Google Scholar]
  10. Glabe C. G. Interaction of the sperm adhesive protein, bindin, with phospholipid vesicles. I. Specific association of bindin with gel-phase phospholipid vesicles. J Cell Biol. 1985 Mar;100(3):794–799. doi: 10.1083/jcb.100.3.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glabe C. G. Interaction of the sperm adhesive protein, bindin, with phospholipid vesicles. II. Bindin induces the fusion of mixed-phase vesicles that contain phosphatidylcholine and phosphatidylserine in vitro. J Cell Biol. 1985 Mar;100(3):800–806. doi: 10.1083/jcb.100.3.800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glaser R. W., Grüne M., Wandelt C., Ulrich A. S. Structure analysis of a fusogenic peptide sequence from the sea urchin fertilization protein bindin. Biochemistry. 1999 Feb 23;38(8):2560–2569. doi: 10.1021/bi982130e. [DOI] [PubMed] [Google Scholar]
  13. Gordon L. M., Curtain C. C., Zhong Y. C., Kirkpatrick A., Mobley P. W., Waring A. J. The amino-terminal peptide of HIV-1 glycoprotein 41 interacts with human erythrocyte membranes: peptide conformation, orientation and aggregation. Biochim Biophys Acta. 1992 Aug 25;1139(4):257–274. doi: 10.1016/0925-4439(92)90099-9. [DOI] [PubMed] [Google Scholar]
  14. Gray C., Tatulian S. A., Wharton S. A., Tamm L. K. Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers. Biophys J. 1996 May;70(5):2275–2286. doi: 10.1016/S0006-3495(96)79793-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hernandez L. D., Hoffman L. R., Wolfsberg T. G., White J. M. Virus-cell and cell-cell fusion. Annu Rev Cell Dev Biol. 1996;12:627–661. doi: 10.1146/annurev.cellbio.12.1.627. [DOI] [PubMed] [Google Scholar]
  16. Hughson F. M. Molecular mechanisms of protein-mediated membrane fusion. Curr Opin Struct Biol. 1995 Aug;5(4):507–513. doi: 10.1016/0959-440x(95)80036-0. [DOI] [PubMed] [Google Scholar]
  17. Kawahara M., Arispe N., Kuroda Y., Rojas E. Alzheimer's disease amyloid beta-protein forms Zn(2+)-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons. Biophys J. 1997 Jul;73(1):67–75. doi: 10.1016/S0006-3495(97)78048-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kelly J. W. Amyloid fibril formation and protein misassembly: a structural quest for insights into amyloid and prion diseases. Structure. 1997 May 15;5(5):595–600. doi: 10.1016/s0969-2126(97)00215-3. [DOI] [PubMed] [Google Scholar]
  19. Kliger Y., Aharoni A., Rapaport D., Jones P., Blumenthal R., Shai Y. Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell Fusion. Structure-function study. J Biol Chem. 1997 May 23;272(21):13496–13505. doi: 10.1074/jbc.272.21.13496. [DOI] [PubMed] [Google Scholar]
  20. Li W. Y., Czilli D. L., Simmons L. K. Neuronal membrane conductance activated by amyloid beta peptide: importance of peptide conformation. Brain Res. 1995 Jun 5;682(1-2):207–211. doi: 10.1016/0006-8993(95)00264-q. [DOI] [PubMed] [Google Scholar]
  21. Malinchik S. B., Inouye H., Szumowski K. E., Kirschner D. A. Structural analysis of Alzheimer's beta(1-40) amyloid: protofilament assembly of tubular fibrils. Biophys J. 1998 Jan;74(1):537–545. doi: 10.1016/S0006-3495(98)77812-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Martin I., Defrise-Quertain F., Decroly E., Vandenbranden M., Brasseur R., Ruysschaert J. M. Orientation and structure of the NH2-terminal HIV-1 gp41 peptide in fused and aggregated liposomes. Biochim Biophys Acta. 1993 Jan 18;1145(1):124–133. doi: 10.1016/0005-2736(93)90389-h. [DOI] [PubMed] [Google Scholar]
  23. McLaurin J., Chakrabartty A. Membrane disruption by Alzheimer beta-amyloid peptides mediated through specific binding to either phospholipids or gangliosides. Implications for neurotoxicity. J Biol Chem. 1996 Oct 25;271(43):26482–26489. doi: 10.1074/jbc.271.43.26482. [DOI] [PubMed] [Google Scholar]
  24. McLaurin J., Franklin T., Chakrabartty A., Fraser P. E. Phosphatidylinositol and inositol involvement in Alzheimer amyloid-beta fibril growth and arrest. J Mol Biol. 1998 Apr 24;278(1):183–194. doi: 10.1006/jmbi.1998.1677. [DOI] [PubMed] [Google Scholar]
  25. Meyer H. W., Bunjes H., Ulrich A. S. Morphological transitions of brain sphingomyelin are determined by the hydration protocol: ripples re-arrange in plane, and sponge-like networks disintegrate into small vesicles. Chem Phys Lipids. 1999 Jun;99(2):111–123. doi: 10.1016/s0009-3084(99)00029-8. [DOI] [PubMed] [Google Scholar]
  26. Meyer H. W., Westermann M., Stumpf M., Richter W., Ulrich A. S., Hoischen C. Minimal radius of curvature of lipid bilayers in the gel phase state corresponds to the dimension of biomembrane structures "caveolae". J Struct Biol. 1998 Dec 1;124(1):77–87. doi: 10.1006/jsbi.1998.4042. [DOI] [PubMed] [Google Scholar]
  27. Minor J. E., Britten R. J., Davidson E. H. Species-specific inhibition of fertilization by a peptide derived from the sperm protein bindin. Mol Biol Cell. 1993 Apr;4(4):375–387. doi: 10.1091/mbc.4.4.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miraglia S. J., Glabe C. G. Characterization of the membrane-associating domain of the sperm adhesive protein, bindin. Biochim Biophys Acta. 1993 Feb 9;1145(2):191–198. doi: 10.1016/0005-2736(93)90288-b. [DOI] [PubMed] [Google Scholar]
  29. Monck J. R., Fernandez J. M. The fusion pore and mechanisms of biological membrane fusion. Curr Opin Cell Biol. 1996 Aug;8(4):524–533. doi: 10.1016/s0955-0674(96)80031-7. [DOI] [PubMed] [Google Scholar]
  30. Muga A., Neugebauer W., Hirama T., Surewicz W. K. Membrane interaction and conformational properties of the putative fusion peptide of PH-30, a protein active in sperm-egg fusion. Biochemistry. 1994 Apr 19;33(15):4444–4448. doi: 10.1021/bi00181a002. [DOI] [PubMed] [Google Scholar]
  31. Nieva J. L., Nir S., Muga A., Goñi F. M., Wilschut J. Interaction of the HIV-1 fusion peptide with phospholipid vesicles: different structural requirements for fusion and leakage. Biochemistry. 1994 Mar 22;33(11):3201–3209. doi: 10.1021/bi00177a009. [DOI] [PubMed] [Google Scholar]
  32. Niidome T., Kimura M., Chiba T., Ohmori N., Mihara H., Aoyagi H. Membrane interaction of synthetic peptides related to the putative fusogenic region of PH-30 alpha, a protein in sperm-egg fusion. J Pept Res. 1997 Jun;49(6):563–569. doi: 10.1111/j.1399-3011.1997.tb01164.x. [DOI] [PubMed] [Google Scholar]
  33. Ohki S., Flanagan T. D., Hoekstra D. Probe transfer with and without membrane fusion in a fluorescence fusion assay. Biochemistry. 1998 May 19;37(20):7496–7503. doi: 10.1021/bi972016g. [DOI] [PubMed] [Google Scholar]
  34. Pereira F. B., Goñi F. M., Muga A., Nieva J. L. Permeabilization and fusion of uncharged lipid vesicles induced by the HIV-1 fusion peptide adopting an extended conformation: dose and sequence effects. Biophys J. 1997 Oct;73(4):1977–1986. doi: 10.1016/S0006-3495(97)78228-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pillot T., Goethals M., Vanloo B., Talussot C., Brasseur R., Vandekerckhove J., Rosseneu M., Lins L. Fusogenic properties of the C-terminal domain of the Alzheimer beta-amyloid peptide. J Biol Chem. 1996 Nov 15;271(46):28757–28765. doi: 10.1074/jbc.271.46.28757. [DOI] [PubMed] [Google Scholar]
  36. Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pécheur E. I., Sainte-Marie J., Bienven e A., Hoekstra D. Peptides and membrane fusion: towards an understanding of the molecular mechanism of protein-induced fusion. J Membr Biol. 1999 Jan 1;167(1):1–17. doi: 10.1007/s002329900466. [DOI] [PubMed] [Google Scholar]
  38. Rafalski M., Lear J. D., DeGrado W. F. Phospholipid interactions of synthetic peptides representing the N-terminus of HIV gp41. Biochemistry. 1990 Aug 28;29(34):7917–7922. doi: 10.1021/bi00486a020. [DOI] [PubMed] [Google Scholar]
  39. Rafalski M., Ortiz A., Rockwell A., van Ginkel L. C., Lear J. D., DeGrado W. F., Wilschut J. Membrane fusion activity of the influenza virus hemagglutinin: interaction of HA2 N-terminal peptides with phospholipid vesicles. Biochemistry. 1991 Oct 22;30(42):10211–10220. doi: 10.1021/bi00106a020. [DOI] [PubMed] [Google Scholar]
  40. Rapaport D., Shai Y. Interaction of fluorescently labeled analogues of the amino-terminal fusion peptide of Sendai virus with phospholipid membranes. J Biol Chem. 1994 May 27;269(21):15124–15131. [PubMed] [Google Scholar]
  41. Regan L. Protein design: novel metal-binding sites. Trends Biochem Sci. 1995 Jul;20(7):280–285. doi: 10.1016/s0968-0004(00)89044-1. [DOI] [PubMed] [Google Scholar]
  42. Shai Y. Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci. 1995 Nov;20(11):460–464. doi: 10.1016/s0968-0004(00)89101-x. [DOI] [PubMed] [Google Scholar]
  43. Slepushkin V. A., Kornilaeva G. V., Andreev S. M., Sidorova M. V., Petrukhina A. O., Matsevich G. R., Raduk S. V., Grigoriev V. B., Makarova T. V., Lukashov V. V. Inhibition of human immunodeficiency virus type 1 (HIV-1) penetration into target cells by synthetic peptides mimicking the N-terminus of the HIV-1 transmembrane glycoprotein. Virology. 1993 May;194(1):294–301. doi: 10.1006/viro.1993.1260. [DOI] [PubMed] [Google Scholar]
  44. Takahashi S. Conformation of membrane fusion-active 20-residue peptides with or without lipid bilayers. Implication of alpha-helix formation for membrane fusion. Biochemistry. 1990 Jul 3;29(26):6257–6264. doi: 10.1021/bi00478a021. [DOI] [PubMed] [Google Scholar]
  45. Terzi E., Hölzemann G., Seelig J. Interaction of Alzheimer beta-amyloid peptide(1-40) with lipid membranes. Biochemistry. 1997 Dec 2;36(48):14845–14852. doi: 10.1021/bi971843e. [DOI] [PubMed] [Google Scholar]
  46. Tillack T. W., Marchesi V. T. Demonstration of the outer surface of freeze-etched red blood cell membranes. J Cell Biol. 1970 Jun;45(3):649–653. doi: 10.1083/jcb.45.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tournois H., Fabrie C. H., Burger K. N., Mandersloot J., Hilgers P., van Dalen H., de Gier J., de Kruijff B. Gramicidin A induced fusion of large unilamellar dioleoylphosphatidylcholine vesicles and its relation to the induction of type II nonbilayer structures. Biochemistry. 1990 Sep 11;29(36):8297–8307. doi: 10.1021/bi00488a014. [DOI] [PubMed] [Google Scholar]
  48. Ulrich A. S., Otter M., Glabe C. G., Hoekstra D. Membrane fusion is induced by a distinct peptide sequence of the sea urchin fertilization protein bindin. J Biol Chem. 1998 Jul 3;273(27):16748–16755. doi: 10.1074/jbc.273.27.16748. [DOI] [PubMed] [Google Scholar]
  49. Verkleij A. J., Leunissen-Bijvelt J., de Kruijff B., Hope M., Cullis P. R. Non-bilayer structures in membrane fusion. Ciba Found Symp. 1984;103:45–59. doi: 10.1002/9780470720844.ch4. [DOI] [PubMed] [Google Scholar]
  50. Wharton S. A., Martin S. R., Ruigrok R. W., Skehel J. J., Wiley D. C. Membrane fusion by peptide analogues of influenza virus haemagglutinin. J Gen Virol. 1988 Aug;69(Pt 8):1847–1857. doi: 10.1099/0022-1317-69-8-1847. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES