Abstract
The erythrocyte's spectrin-actin membrane skeleton is directly shown to be capable of sustaining large, anisotropic strains. Photobleaching of an approximately 1-micrometer stripe in rhodamine phalloidin-labeled actin appears stable up to at least 37 degrees C, and is used to demonstrate large in-surface stretching during elastic deformation of the skeleton. Principal extension or stretch ratios of at least approximately 200% and contractions down to approximately 40%, both referenced to an essentially undistorted cell, are visually demonstrated in micropipette-imposed deformation. Such anisotropic straining is seen to be consistent at a qualitative level with now classic analyses (Evans. 1973. Biophys. J. 13:941-954) and is generally nonhomogeneous though axisymmetric down to the submicron scale. Local, direct measurements of stretching prove quantitatively consistent (within approximately 10%) with integrated estimates that are based simply on a measured relative density distribution of actin. The measurements are also in close agreement with direct computation of mean spectrin chain extension in full statistical mechanical simulations of a coarse-grained network held in a micropipette. Finally, as a cell thermally fragments near approximately 48 degrees C, the patterned photobleaching demonstrates a destructuring of the surface network in a process that is more readily attributable to transitions in spectrin than in F-actin.
Full Text
The Full Text of this article is available as a PDF (437.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aebi U., Cohn J., Buhle L., Gerace L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature. 1986 Oct 9;323(6088):560–564. doi: 10.1038/323560a0. [DOI] [PubMed] [Google Scholar]
- Artmann G. M., Kelemen C., Porst D., Büldt G., Chien S. Temperature transitions of protein properties in human red blood cells. Biophys J. 1998 Dec;75(6):3179–3183. doi: 10.1016/S0006-3495(98)77759-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boal D. H. Computer simulation of a model network for the erythrocyte cytoskeleton. Biophys J. 1994 Aug;67(2):521–529. doi: 10.1016/S0006-3495(94)80511-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boey S. K., Boal D. H., Discher D. E. Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys J. 1998 Sep;75(3):1573–1583. doi: 10.1016/S0006-3495(98)74075-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byers T. J., Branton D. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6153–6157. doi: 10.1073/pnas.82.18.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahm R., Gribbon C., Quinlan R. A., Prescott A. R. Changes in the nucleolar and coiled body compartments precede lamina and chromatin reorganization during fibre cell denucleation in the bovine lens. Eur J Cell Biol. 1998 Mar;75(3):237–246. doi: 10.1016/S0171-9335(98)80118-0. [DOI] [PubMed] [Google Scholar]
- De La Cruz E. M., Pollard T. D. Kinetics and thermodynamics of phalloidin binding to actin filaments from three divergent species. Biochemistry. 1996 Nov 12;35(45):14054–14061. doi: 10.1021/bi961047t. [DOI] [PubMed] [Google Scholar]
- Discher D. E., Boal D. H., Boey S. K. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys J. 1998 Sep;75(3):1584–1597. doi: 10.1016/S0006-3495(98)74076-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Discher D. E., Mohandas N., Evans E. A. Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science. 1994 Nov 11;266(5187):1032–1035. doi: 10.1126/science.7973655. [DOI] [PubMed] [Google Scholar]
- Discher D. E., Mohandas N. Kinematics of red cell aspiration by fluorescence-imaged microdeformation. Biophys J. 1996 Oct;71(4):1680–1694. doi: 10.1016/S0006-3495(96)79424-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Discher D. E., Winardi R., Schischmanoff P. O., Parra M., Conboy J. G., Mohandas N. Mechanochemistry of protein 4.1's spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening. J Cell Biol. 1995 Aug;130(4):897–907. doi: 10.1083/jcb.130.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E. A. A new material concept for the red cell membrane. Biophys J. 1973 Sep;13(9):926–940. doi: 10.1016/S0006-3495(73)86035-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E. A., La Celle P. L. Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood. 1975 Jan;45(1):29–43. [PubMed] [Google Scholar]
- Evans E. A. New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. Biophys J. 1973 Sep;13(9):941–954. doi: 10.1016/S0006-3495(73)86036-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feng S, Thorpe MF, Garboczi E. Effective-medium theory of percolation on central-force elastic networks. Phys Rev B Condens Matter. 1985 Jan 1;31(1):276–280. doi: 10.1103/physrevb.31.276. [DOI] [PubMed] [Google Scholar]
- Golan D. E., Veatch W. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions. Proc Natl Acad Sci U S A. 1980 May;77(5):2537–2541. doi: 10.1073/pnas.77.5.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holley M. C., Ashmore J. F. Spectrin, actin and the structure of the cortical lattice in mammalian cochlear outer hair cells. J Cell Sci. 1990 Jun;96(Pt 2):283–291. doi: 10.1242/jcs.96.2.283. [DOI] [PubMed] [Google Scholar]
- Lee J., Ishihara A., Theriot J. A., Jacobson K. Principles of locomotion for simple-shaped cells. Nature. 1993 Mar 11;362(6416):167–171. doi: 10.1038/362167a0. [DOI] [PubMed] [Google Scholar]
- Lieber M. R., Steck T. L. Hemolytic holes in human erythrocyte membrane ghosts. Methods Enzymol. 1989;173:356–367. doi: 10.1016/s0076-6879(89)73023-8. [DOI] [PubMed] [Google Scholar]
- Lysko K. A., Carlson R., Taverna R., Snow J., Brandts J. F. Protein involvement in structural transition of erythrocyte ghosts. Use of thermal gel analysis to detect protein aggregation. Biochemistry. 1981 Sep 15;20(19):5570–5576. doi: 10.1021/bi00522a034. [DOI] [PubMed] [Google Scholar]
- Marchesi V. T. Isolation of spectrin from erythrocyte membranes. Methods Enzymol. 1974;32:275–277. doi: 10.1016/0076-6879(74)32028-9. [DOI] [PubMed] [Google Scholar]
- Minetti M., Ceccarini M., Di Stasi A. M., Petrucci T. C., Marchesi V. T. Spectrin involvement in a 40 degrees C structural transition of the red blood cell membrane. J Cell Biochem. 1986;30(4):361–370. doi: 10.1002/jcb.240300409. [DOI] [PubMed] [Google Scholar]
- Mohandas N., Evans E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct. 1994;23:787–818. doi: 10.1146/annurev.bb.23.060194.004035. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L., Marchesi V. T., Singer S. J. The localization of spectrin on the inner surface of human red blood cell membranes by ferritin-conjugated antibodies. J Cell Biol. 1971 Oct;51(1):265–272. doi: 10.1083/jcb.51.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAND R. P., BURTON A. C. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE. Biophys J. 1964 Mar;4:115–135. doi: 10.1016/s0006-3495(64)86773-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skalak R., Tozeren A., Zarda R. P., Chien S. Strain energy function of red blood cell membranes. Biophys J. 1973 Mar;13(3):245–264. doi: 10.1016/S0006-3495(73)85983-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stokke B. T., Mikkelsen A., Elgsaeter A. The human erythrocyte membrane skeleton may be an ionic gel. I. Membrane mechanochemical properties. Eur Biophys J. 1986;13(4):203–218. doi: 10.1007/BF00260368. [DOI] [PubMed] [Google Scholar]
- Takakuwa Y., Tchernia G., Rossi M., Benabadji M., Mohandas N. Restoration of normal membrane stability to unstable protein 4.1-deficient erythrocyte membranes by incorporation of purified protein 4.1. J Clin Invest. 1986 Jul;78(1):80–85. doi: 10.1172/JCI112577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tolomeo J. A., Steele C. R., Holley M. C. Mechanical properties of the lateral cortex of mammalian auditory outer hair cells. Biophys J. 1996 Jul;71(1):421–429. doi: 10.1016/S0006-3495(96)79244-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waugh R. E., Agre P. Reductions of erythrocyte membrane viscoelastic coefficients reflect spectrin deficiencies in hereditary spherocytosis. J Clin Invest. 1988 Jan;81(1):133–141. doi: 10.1172/JCI113284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waugh R., Evans E. A. Thermoelasticity of red blood cell membrane. Biophys J. 1979 Apr;26(1):115–131. doi: 10.1016/S0006-3495(79)85239-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weaver F. E., Polster H., Febboriello P., Sheetz M. P., Schmid-Schonbein H., Koppel D. E. Normal band 3-cytoskeletal interactions are maintained on tanktreading erythrocytes. Biophys J. 1990 Dec;58(6):1427–1436. doi: 10.1016/S0006-3495(90)82488-7. [DOI] [PMC free article] [PubMed] [Google Scholar]