Abstract
The association of anionic polyelectrolytes such as dextran sulfate (DS) to zwitterionic phospholipid surfaces via Ca(2+) bridges results in a perturbation of lipid packing at physiologically relevant Ca(2+) concentrations. Lipid area compression was investigated in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) multilamellar bilayer dispersions by (2)H-NMR and in monolayer studies. Binding of DS to DMPC surfaces via Ca(2+) results in denser lipid packing, as indicated by higher lipid chain order. DMPC order parameters are homogeneously increased throughout the lipid bilayer. Higher order translates into more extended hydrocarbon chains and decreased average lipid area per molecule. Area compression is reported as a function of DS concentration and molecular weight. Altering the NaCl and Ca(2+) concentrations modified electrostatic interactions between DS and phospholipid. A maximal area reduction of DeltaA = 2.7 A(2) per DMPC molecule is observed. The lipid main-phase transition temperature increases upon formation of DMPC/Ca(2+)/DS-complexes. Lipid area compression after addition of DS and Ca(2+) to the subphase was also observed in monolayer experiments. A decrease in surface tension of up to 3.5 mN/m at constant molecular area was observed. DS binds to the lipid headgroups by formation of Ca(2+) bridges without penetrating the hydrophobic region. We suggest that area compression is the result of an attractive electrostatic interaction between neighboring lipid molecules induced by high local Ca(2+) concentration due to the presence of DS. X-ray diffraction experiments demonstrate that DS binding to apposing bilayers reduces bilayer separation. We speculate that DS binding alters the phase state of low-density lipoproteins that associate with polyelectrolytes of the arterial connective tissue in the early stages of arteriosclerosis.
Full Text
The Full Text of this article is available as a PDF (106.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold K., Arnhold J., Zschörnig O., Wiegel D., Krumbiegel M. Characterization of chemical modifications of surface properties of low density lipoproteins. Biomed Biochim Acta. 1989;48(10):735–742. [PubMed] [Google Scholar]
- Arnold K., Gawrisch K. Effects of fusogenic agents on membrane hydration: a deuterium nuclear magnetic resonance approach. Methods Enzymol. 1993;220:143–157. doi: 10.1016/0076-6879(93)20080-m. [DOI] [PubMed] [Google Scholar]
- Arnold K., Ohki S., Krumbiegel M. Interaction of dextran sulfate with phospholipid surfaces and liposome aggregation and fusion. Chem Phys Lipids. 1990 Sep;55(3):301–307. doi: 10.1016/0009-3084(90)90168-q. [DOI] [PubMed] [Google Scholar]
- Barry J. A., Gawrisch K. Effects of ethanol on lipid bilayers containing cholesterol, gangliosides, and sphingomyelin. Biochemistry. 1995 Jul 11;34(27):8852–8860. doi: 10.1021/bi00027a037. [DOI] [PubMed] [Google Scholar]
- Bihari-Varga M., Sztatisz J., Gál S. Changes in the physical behavior of low density lipoprotein in the presence of glycosaminoglycans and high density lipoprotein. Atherosclerosis. 1981 Apr;39(1):19–23. doi: 10.1016/0021-9150(81)90084-8. [DOI] [PubMed] [Google Scholar]
- Blatt E., Vaz W. L. The effects of Ca2+ on lipid diffusion. Chem Phys Lipids. 1986 Oct-Nov;41(3-4):183–194. doi: 10.1016/0009-3084(86)90021-6. [DOI] [PubMed] [Google Scholar]
- Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
- Camejo G., López A., López F., Quiñones J. Interaction of low density lipoproteins with arterial proteoglycans. The role of charge and sialic acid content. Atherosclerosis. 1985 Apr;55(1):93–105. doi: 10.1016/0021-9150(85)90169-8. [DOI] [PubMed] [Google Scholar]
- Camejo G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: its possible role in atherogenesis. Adv Lipid Res. 1982;19:1–53. doi: 10.1016/b978-0-12-024919-0.50007-2. [DOI] [PubMed] [Google Scholar]
- Cardin A. D., Jackson R. L., Elledge B., Feldhake D. Dependence on heparin chain-length of the interaction of heparin with human plasma low density lipoproteins. Int J Biol Macromol. 1989 Feb;11(1):59–62. doi: 10.1016/0141-8130(89)90042-1. [DOI] [PubMed] [Google Scholar]
- Cardin A. D., Weintraub H. J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis. 1989 Jan-Feb;9(1):21–32. doi: 10.1161/01.atv.9.1.21. [DOI] [PubMed] [Google Scholar]
- Davis J. H. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta. 1983 Mar 21;737(1):117–171. doi: 10.1016/0304-4157(83)90015-1. [DOI] [PubMed] [Google Scholar]
- Demel R. A., Jordi W., Lambrechts H., van Damme H., Hovius R., de Kruijff B. Differential interactions of apo- and holocytochrome c with acidic membrane lipids in model systems and the implications for their import into mitochondria. J Biol Chem. 1989 Mar 5;264(7):3988–3997. [PubMed] [Google Scholar]
- Fenske D. B., Cushley R. J. Insoluble complex formation between low density lipoprotein and heparin. A 31P-NMR study. Chem Phys Lipids. 1990 Apr;54(1):9–16. doi: 10.1016/0009-3084(90)90054-u. [DOI] [PubMed] [Google Scholar]
- Gawrisch K., Barry J. A., Holte L. L., Sinnwell T., Bergelson L. D., Ferretti J. A. Role of interactions at the lipid-water interface for domain formation. Mol Membr Biol. 1995 Jan-Mar;12(1):83–88. doi: 10.3109/09687689509038500. [DOI] [PubMed] [Google Scholar]
- Gigli M., Consonni A., Ghiselli G., Rizzo V., Naggi A., Torri G. Heparin binding to human plasma low-density lipoproteins: dependence on heparin sulfation degree and chain length. Biochemistry. 1992 Jul 7;31(26):5996–6003. doi: 10.1021/bi00141a006. [DOI] [PubMed] [Google Scholar]
- Holte L. L., Separovic F., Gawrisch K. Nuclear magnetic resonance investigation of hydrocarbon chain packing in bilayers of polyunsaturated phospholipids. Lipids. 1996 Mar;31 (Suppl):S199–S203. doi: 10.1007/BF02637076. [DOI] [PubMed] [Google Scholar]
- Huster D., Arnold K. Ca2+-mediated interaction between dextran sulfate and dimyristoyl-sn-glycero-3-phosphocholine surfaces studied by 2H nuclear magnetic resonance. Biophys J. 1998 Aug;75(2):909–916. doi: 10.1016/S0006-3495(98)77579-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huster D., Jin A. J., Arnold K., Gawrisch K. Water permeability of polyunsaturated lipid membranes measured by 17O NMR. Biophys J. 1997 Aug;73(2):855–864. doi: 10.1016/S0006-3495(97)78118-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
- Iverius P. H. The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans. J Biol Chem. 1972 Apr 25;247(8):2607–2613. [PubMed] [Google Scholar]
- Janiak M. J., Small D. M., Shipley G. G. Nature of the Thermal pretransition of synthetic phospholipids: dimyristolyl- and dipalmitoyllecithin. Biochemistry. 1976 Oct 19;15(21):4575–4580. doi: 10.1021/bi00666a005. [DOI] [PubMed] [Google Scholar]
- Johnson S. J., Bayerl T. M., Weihan W., Noack H., Penfold J., Thomas R. K., Kanellas D., Rennie A. R., Sackmann E. Coupling of spectrin and polylysine to phospholipid monolayers studied by specular reflection of neutrons. Biophys J. 1991 Nov;60(5):1017–1025. doi: 10.1016/S0006-3495(91)82139-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y. C., Nishida T. Nature of interaction of dextran sulfate with lecithin dispersions and lysolecithin micelles. J Biol Chem. 1977 Feb 25;252(4):1243–1249. [PubMed] [Google Scholar]
- Kim Y. C., Nishida T. Nature of the interaction of dextran sulfate with high and low density lipoproteins in the presence of Ca2+. J Biol Chem. 1979 Oct 10;254(19):9621–9626. [PubMed] [Google Scholar]
- Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krumbiegel M., Arnold K. Microelectrophoresis studies of the binding of glycosaminoglycans to phosphatidylcholine liposomes. Chem Phys Lipids. 1990 Apr;54(1):1–7. doi: 10.1016/0009-3084(90)90053-t. [DOI] [PubMed] [Google Scholar]
- Lafleur M., Fine B., Sternin E., Cullis P. R., Bloom M. Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance. Biophys J. 1989 Nov;56(5):1037–1041. doi: 10.1016/S0006-3495(89)82749-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laroche G., Dufourc E. J., Pézolet M., Dufourcq J. Coupled changes between lipid order and polypeptide conformation at the membrane surface. A 2H NMR and Raman study of polylysine-phosphatidic acid systems. Biochemistry. 1990 Jul 10;29(27):6460–6465. doi: 10.1021/bi00479a018. [DOI] [PubMed] [Google Scholar]
- Lemmich J, Mortensen K, Ipsen JH, Honger T, Bauer R, Mouritsen OG. Small-angle neutron scattering from multilamellar lipid bilayers: Theory, model, and experiment. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 May;53(5):5169–5180. doi: 10.1103/physreve.53.5169. [DOI] [PubMed] [Google Scholar]
- Lis L. J., Parsegian V. A., Rand R. P. Binding of divalent cations of dipalmitoylphosphatidylcholine bilayers and its effect on bilayer interaction. Biochemistry. 1981 Mar 31;20(7):1761–1770. doi: 10.1021/bi00510a009. [DOI] [PubMed] [Google Scholar]
- Maksymiw R., Sui S. F., Gaub H., Sackmann E. Electrostatic coupling of spectrin dimers to phosphatidylserine containing lipid lamellae. Biochemistry. 1987 Jun 2;26(11):2983–2990. doi: 10.1021/bi00385a005. [DOI] [PubMed] [Google Scholar]
- Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
- Marsh D. Lateral pressure in membranes. Biochim Biophys Acta. 1996 Oct 29;1286(3):183–223. doi: 10.1016/s0304-4157(96)00009-3. [DOI] [PubMed] [Google Scholar]
- Nagle J. F. Area/lipid of bilayers from NMR. Biophys J. 1993 May;64(5):1476–1481. doi: 10.1016/S0006-3495(93)81514-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nezil F. A., Bloom M. Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes. Biophys J. 1992 May;61(5):1176–1183. doi: 10.1016/S0006-3495(92)81926-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishida T., Cogan U. Nature of the interaction of dextran sulfate with low density lipoproteins of plasma. J Biol Chem. 1970 Sep 25;245(18):4689–4697. [PubMed] [Google Scholar]
- Roux M., Neumann J. M., Hodges R. S., Devaux P. F., Bloom M. Conformational changes of phospholipid headgroups induced by a cationic integral membrane peptide as seen by deuterium magnetic resonance. Biochemistry. 1989 Mar 7;28(5):2313–2321. doi: 10.1021/bi00431a050. [DOI] [PubMed] [Google Scholar]
- Rudel L. L., Parks J. S., Johnson F. L., Babiak J. Low density lipoproteins in atherosclerosis. J Lipid Res. 1986 May;27(5):465–474. [PubMed] [Google Scholar]
- Seelig A., Seelig J. The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry. 1974 Nov 5;13(23):4839–4845. doi: 10.1021/bi00720a024. [DOI] [PubMed] [Google Scholar]
- Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
- Srinivasan S. R., Radhakrishnamurthy B., Berenson G. S. Studies on the interaction of heparin with serum lipoproteins in the presence of Ca2+, Mg2+, and Mn2+. Arch Biochem Biophys. 1975 Sep;170(1):334–340. doi: 10.1016/0003-9861(75)90125-3. [DOI] [PubMed] [Google Scholar]
- Steffan G., Wulff S., Galla H. J. Divalent cation-dependent interaction of sulfated polysaccharides with phosphatidylcholine and mixed phosphatidylcholine/phosphatidylglycerol liposomes. Chem Phys Lipids. 1994 Dec;74(2):141–150. doi: 10.1016/0009-3084(94)90055-8. [DOI] [PubMed] [Google Scholar]
- Voszka I., Györgyi S., Bihari-Varga M. Effect of glycosaminoglycans and divalent cations on the thermal properties of dipalmitoylphosphatidylcholine. Chem Phys Lipids. 1989 Jul;51(1):67–71. doi: 10.1016/0009-3084(89)90067-4. [DOI] [PubMed] [Google Scholar]
- Weisgraber K. H., Rall S. C., Jr Human apolipoprotein B-100 heparin-binding sites. J Biol Chem. 1987 Aug 15;262(23):11097–11103. [PubMed] [Google Scholar]
- Zidovetzki R., Atiya A. W., De Boeck H. Effect of divalent cations on the structure of dipalmitoylphosphatidylcholine and phosphatidylcholine/phosphatidylglycerol bilayers: an 2H-NMR study. Membr Biochem. 1989;8(3):177–186. doi: 10.3109/09687688909025830. [DOI] [PubMed] [Google Scholar]