Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Aug;77(2):903–914. doi: 10.1016/S0006-3495(99)76941-9

Effect of hydrophobic surfactant peptides SP-B and SP-C on binary phospholipid monolayers. I. Fluorescence and dark-field microscopy.

P Krüger 1, M Schalke 1, Z Wang 1, R H Notter 1, R A Dluhy 1, M Lösche 1
PMCID: PMC1300381  PMID: 10423435

Abstract

The influence of the hydrophobic proteins SP-B and SP-C, isolated from pulmonary surfactant, on the morphology of binary monomolecular lipid films containing phosphocholine and phosphoglycerol (DPPC and DPPG) at the air-water interface has been studied using epifluorescence and dark-field microscopy. In contrast to previously published studies, the monolayer experiments used the entire hydrophobic surfactant protein fraction (containing both the SP-B and SP-C peptides) at physiologically relevant concentrations (approximately 1 wt %). Even at such low levels, the SP-B/C peptides induce the formation of a new phase in the surface monolayer that is of lower intrinsic order than the liquid condensed (LC) phase that forms in the pure lipid mixture. This presumably leads to a higher structural flexibility of the surface monolayer at high lateral pressure. Variation of the subphase pH indicates that electrostatic interaction dominates the association of the SP-B/C peptides with the lipid monolayer. As evidenced from dark-field microscopy, monolayer material is excluded from the DPPC/DPPG surface film on compression and forms three-dimensional, surface-associated structures of micron dimensions. Such exclusion bodies formed only with SP-B/C peptides. This observation provides the first direct optical evidence for the squeeze-out of pulmonary surfactant material in situ at the air-water interface upon increasing monolayer surface pressures.

Full Text

The Full Text of this article is available as a PDF (799.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVERY M. E., MEAD J. Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Dis Child. 1959 May;97(5 Pt 1):517–523. doi: 10.1001/archpedi.1959.02070010519001. [DOI] [PubMed] [Google Scholar]
  2. Amrein M., von Nahmen A., Sieber M. A scanning force- and fluorescence light microscopy study of the structure and function of a model pulmonary surfactant. Eur Biophys J. 1997;26(5):349–357. doi: 10.1007/s002490050089. [DOI] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Bernard G. R., Artigas A., Brigham K. L., Carlet J., Falke K., Hudson L., Lamy M., Legall J. R., Morris A., Spragg R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994 Mar;149(3 Pt 1):818–824. doi: 10.1164/ajrccm.149.3.7509706. [DOI] [PubMed] [Google Scholar]
  5. Clements J. A. Functions of the alveolar lining. Am Rev Respir Dis. 1977 Jun;115(6 Pt 2):67–71. doi: 10.1164/arrd.1977.115.S.67. [DOI] [PubMed] [Google Scholar]
  6. Discher B. M., Maloney K. M., Schief W. R., Jr, Grainger D. W., Vogel V., Hall S. B. Lateral phase separation in interfacial films of pulmonary surfactant. Biophys J. 1996 Nov;71(5):2583–2590. doi: 10.1016/S0006-3495(96)79450-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dluhy R. A., Reilly K. E., Hunt R. D., Mitchell M. L., Mautone A. J., Mendelsohn R. Infrared spectroscopic investigations of pulmonary surfactant. Surface film transitions at the air-water interface and bulk phase thermotropism. Biophys J. 1989 Dec;56(6):1173–1181. doi: 10.1016/S0006-3495(89)82764-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fischer TM, Bruinsma RF, Knobler CM. Textures of surfactant monolayers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Jul;50(1):413–428. doi: 10.1103/physreve.50.413. [DOI] [PubMed] [Google Scholar]
  9. Gericke A., Flach C. R., Mendelsohn R. Structure and orientation of lung surfactant SP-C and L-alpha-dipalmitoylphosphatidylcholine in aqueous monolayers. Biophys J. 1997 Jul;73(1):492–499. doi: 10.1016/S0006-3495(97)78087-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goerke J. Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta. 1998 Nov 19;1408(2-3):79–89. doi: 10.1016/s0925-4439(98)00060-x. [DOI] [PubMed] [Google Scholar]
  11. Grainger D. W., Reichert A., Ringsdorf H., Salesse C. Hydrolytic action of phospholipase A2 in monolayers in the phase transition region: direct observation of enzyme domain formation using fluorescence microscopy. Biochim Biophys Acta. 1990 Apr 30;1023(3):365–379. doi: 10.1016/0005-2736(90)90128-b. [DOI] [PubMed] [Google Scholar]
  12. Haagsman H. P., van Golde L. M. Synthesis and assembly of lung surfactant. Annu Rev Physiol. 1991;53:441–464. doi: 10.1146/annurev.ph.53.030191.002301. [DOI] [PubMed] [Google Scholar]
  13. Hall S. B., Wang Z., Notter R. H. Separation of subfractions of the hydrophobic components of calf lung surfactant. J Lipid Res. 1994 Aug;35(8):1386–1394. [PubMed] [Google Scholar]
  14. Hawgood S., Derrick M., Poulain F. Structure and properties of surfactant protein B. Biochim Biophys Acta. 1998 Nov 19;1408(2-3):150–160. doi: 10.1016/s0925-4439(98)00064-7. [DOI] [PubMed] [Google Scholar]
  15. Hawgood S., Shiffer K. Structures and properties of the surfactant-associated proteins. Annu Rev Physiol. 1991;53:375–394. doi: 10.1146/annurev.ph.53.030191.002111. [DOI] [PubMed] [Google Scholar]
  16. Heckl W. M., Lösche M., Cadenhead D. A., Möhwald H. Electrostatically induced growth of spiral lipid domains in the presence of cholesterol. Eur Biophys J. 1986;14(1):11–17. doi: 10.1007/BF00260398. [DOI] [PubMed] [Google Scholar]
  17. Hildebran J. N., Goerke J., Clements J. A. Pulmonary surface film stability and composition. J Appl Physiol Respir Environ Exerc Physiol. 1979 Sep;47(3):604–611. doi: 10.1152/jappl.1979.47.3.604. [DOI] [PubMed] [Google Scholar]
  18. Holm B. A., Wang Z., Egan E. A., Notter R. H. Content of dipalmitoyl phosphatidylcholine in lung surfactant: ramifications for surface activity. Pediatr Res. 1996 May;39(5):805–811. doi: 10.1203/00006450-199605000-00010. [DOI] [PubMed] [Google Scholar]
  19. Johansson J., Curstedt T., Robertson B. The proteins of the surfactant system. Eur Respir J. 1994 Feb;7(2):372–391. doi: 10.1183/09031936.94.07020372. [DOI] [PubMed] [Google Scholar]
  20. Johansson J. Structure and properties of surfactant protein C. Biochim Biophys Acta. 1998 Nov 19;1408(2-3):161–172. doi: 10.1016/s0925-4439(98)00065-9. [DOI] [PubMed] [Google Scholar]
  21. Kahn M. C., Anderson G. J., Anyan W. R., Hall S. B. Phosphatidylcholine molecular species of calf lung surfactant. Am J Physiol. 1995 Nov;269(5 Pt 1):L567–L573. doi: 10.1152/ajplung.1995.269.5.L567. [DOI] [PubMed] [Google Scholar]
  22. Kaplan R. S., Pedersen P. L. Determination of microgram quantities of protein in the presence of milligram levels of lipid with amido black 10B. Anal Biochem. 1985 Oct;150(1):97–104. doi: 10.1016/0003-2697(85)90445-2. [DOI] [PubMed] [Google Scholar]
  23. Kjaer K, Als-Nielsen J, Helm CA, Laxhuber LA, Möhwald H. Ordering in lipid monolayers studied by synchrotron x-ray diffraction and fluorescence microscopy. Phys Rev Lett. 1987 May 25;58(21):2224–2227. doi: 10.1103/PhysRevLett.58.2224. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Lipp M. M., Lee K. Y., Waring A., Zasadzinski J. A. Fluorescence, polarized fluorescence, and Brewster angle microscopy of palmitic acid and lung surfactant protein B monolayers. Biophys J. 1997 Jun;72(6):2783–2804. doi: 10.1016/S0006-3495(97)78921-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lipp M. M., Lee K. Y., Zasadzinski J. A., Waring A. J. Phase and morphology changes in lipid monolayers induced by SP-B protein and its amino-terminal peptide. Science. 1996 Aug 30;273(5279):1196–1199. doi: 10.1126/science.273.5279.1196. [DOI] [PubMed] [Google Scholar]
  27. Longo M. L., Bisagno A. M., Zasadzinski J. A., Bruni R., Waring A. J. A function of lung surfactant protein SP-B. Science. 1993 Jul 23;261(5120):453–456. doi: 10.1126/science.8332910. [DOI] [PubMed] [Google Scholar]
  28. Mi L. Z., Wang H. W., Sui S. F. Interaction of rabbit C-reactive protein with phospholipid monolayers studied by microfluorescence film balance with an externally applied electric field. Biophys J. 1997 Jul;73(1):446–451. doi: 10.1016/S0006-3495(97)78083-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miller A, Knoll W, Möhwald H. Fractal growth of crystalline phospholipid domains in monomolecular layers. Phys Rev Lett. 1986 Jun 16;56(24):2633–2636. doi: 10.1103/PhysRevLett.56.2633. [DOI] [PubMed] [Google Scholar]
  30. Nag K., Keough K. M. Epifluorescence microscopic studies of monolayers containing mixtures of dioleoyl- and dipalmitoylphosphatidylcholines. Biophys J. 1993 Sep;65(3):1019–1026. doi: 10.1016/S0006-3495(93)81155-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nag K., Perez-Gil J., Cruz A., Keough K. M. Fluorescently labeled pulmonary surfactant protein C in spread phospholipid monolayers. Biophys J. 1996 Jul;71(1):246–256. doi: 10.1016/S0006-3495(96)79221-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nag K., Perez-Gil J., Cruz A., Rich N. H., Keough K. M. Spontaneous formation of interfacial lipid-protein monolayers during adsorption from vesicles. Biophys J. 1996 Sep;71(3):1356–1363. doi: 10.1016/S0006-3495(96)79338-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nag K., Perez-Gil J., Ruano M. L., Worthman L. A., Stewart J., Casals C., Keough K. M. Phase transitions in films of lung surfactant at the air-water interface. Biophys J. 1998 Jun;74(6):2983–2995. doi: 10.1016/S0006-3495(98)78005-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nag K., Taneva S. G., Perez-Gil J., Cruz A., Keough K. M. Combinations of fluorescently labeled pulmonary surfactant proteins SP-B and SP-C in phospholipid films. Biophys J. 1997 Jun;72(6):2638–2650. doi: 10.1016/S0006-3495(97)78907-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Notter R. H., Finkelstein J. N., Taubold R. D. Comparative adsorption of natural lung surfactant, extracted phospholipids, and artificial phospholipid mixtures to the air-water interface. Chem Phys Lipids. 1983 Jul;33(1):67–80. doi: 10.1016/0009-3084(83)90009-9. [DOI] [PubMed] [Google Scholar]
  36. Notter R. H., Shapiro D. L. Lung surfactants for replacement therapy: biochemical, biophysical, and clinical aspects. Clin Perinatol. 1987 Sep;14(3):433–479. [PubMed] [Google Scholar]
  37. Oosterlaken-Dijksterhuis M. A., Haagsman H. P., van Golde L. M., Demel R. A. Characterization of lipid insertion into monomolecular layers mediated by lung surfactant proteins SP-B and SP-C. Biochemistry. 1991 Nov 12;30(45):10965–10971. doi: 10.1021/bi00109a022. [DOI] [PubMed] [Google Scholar]
  38. Oosterlaken-Dijksterhuis M. A., Haagsman H. P., van Golde L. M., Demel R. A. Interaction of lipid vesicles with monomolecular layers containing lung surfactant proteins SP-B or SP-C. Biochemistry. 1991 Aug 20;30(33):8276–8281. doi: 10.1021/bi00247a024. [DOI] [PubMed] [Google Scholar]
  39. Oosterlaken-Dijksterhuis M. A., van Eijk M., van Golde L. M., Haagsman H. P. Lipid mixing is mediated by the hydrophobic surfactant protein SP-B but not by SP-C. Biochim Biophys Acta. 1992 Sep 21;1110(1):45–50. doi: 10.1016/0005-2736(92)90292-t. [DOI] [PubMed] [Google Scholar]
  40. Pastrana-Rios B., Flach C. R., Brauner J. W., Mautone A. J., Mendelsohn R. A direct test of the "squeeze-out" hypothesis of lung surfactant function. External reflection FT-IR at the air/water interface. Biochemistry. 1994 May 3;33(17):5121–5127. doi: 10.1021/bi00183a016. [DOI] [PubMed] [Google Scholar]
  41. Pastrana-Rios B., Taneva S., Keough K. M., Mautone A. J., Mendelsohn R. External reflection absorption infrared spectroscopy study of lung surfactant proteins SP-B and SP-C in phospholipid monolayers at the air/water interface. Biophys J. 1995 Dec;69(6):2531–2540. doi: 10.1016/S0006-3495(95)80124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pastrana B., Mautone A. J., Mendelsohn R. Fourier transform infrared studies of secondary structure and orientation of pulmonary surfactant SP-C and its effect on the dynamic surface properties of phospholipids. Biochemistry. 1991 Oct 15;30(41):10058–10064. doi: 10.1021/bi00105a033. [DOI] [PubMed] [Google Scholar]
  43. Pérez-Gil J., Keough K. M. Interfacial properties of surfactant proteins. Biochim Biophys Acta. 1998 Nov 19;1408(2-3):203–217. doi: 10.1016/s0925-4439(98)00068-4. [DOI] [PubMed] [Google Scholar]
  44. Pérez-Gil J., Nag K., Taneva S., Keough K. M. Pulmonary surfactant protein SP-C causes packing rearrangements of dipalmitoylphosphatidylcholine in spread monolayers. Biophys J. 1992 Jul;63(1):197–204. doi: 10.1016/S0006-3495(92)81582-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pérez-Gil J., Tucker J., Simatos G., Keough K. M. Interfacial adsorption of simple lipid mixtures combined with hydrophobic surfactant protein from pig lung. Biochem Cell Biol. 1992 May;70(5):332–338. doi: 10.1139/o92-051. [DOI] [PubMed] [Google Scholar]
  46. Reichert A., Ringsdorf H., Wagenknecht A. Spontaneous domain formation of phospholipase A2 at interfaces: fluorescence microscopy of the interaction of phospholipase A2 with mixed monolayers of lecithin, lysolecithin and fatty acid. Biochim Biophys Acta. 1992 Apr 29;1106(1):178–188. doi: 10.1016/0005-2736(92)90237-g. [DOI] [PubMed] [Google Scholar]
  47. Schürch S., Goerke J., Clements J. A. Direct determination of volume- and time-dependence of alveolar surface tension in excised lungs. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3417–3421. doi: 10.1073/pnas.75.7.3417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schürch S., Schürch D., Curstedt T., Robertson B. Surface activity of lipid extract surfactant in relation to film area compression and collapse. J Appl Physiol (1985) 1994 Aug;77(2):974–986. doi: 10.1152/jappl.1994.77.2.974. [DOI] [PubMed] [Google Scholar]
  49. Schürch S. Surface tension at low lung volumes: dependence on time and alveolar size. Respir Physiol. 1982 Jun;48(3):339–355. doi: 10.1016/0034-5687(82)90038-x. [DOI] [PubMed] [Google Scholar]
  50. Subirade M., Salesse C., Marion D., Pézolet M. Interaction of a nonspecific wheat lipid transfer protein with phospholipid monolayers imaged by fluorescence microscopy and studied by infrared spectroscopy. Biophys J. 1995 Sep;69(3):974–988. doi: 10.1016/S0006-3495(95)79971-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vaknin D., Kjaer K., Als-Nielsen J., Lösche M. Structural properties of phosphatidylcholine in a monolayer at the air/water interface: Neutron reflection study and reexamination of x-ray reflection measurements. Biophys J. 1991 Jun;59(6):1325–1332. doi: 10.1016/S0006-3495(91)82347-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Van Golde L. M., Batenburg J. J., Robertson B. The pulmonary surfactant system: biochemical aspects and functional significance. Physiol Rev. 1988 Apr;68(2):374–455. doi: 10.1152/physrev.1988.68.2.374. [DOI] [PubMed] [Google Scholar]
  53. Venkitaraman A. R., Baatz J. E., Whitsett J. A., Hall S. B., Notter R. H. Biophysical inhibition of synthetic phospholipid-lung surfactant apoprotein admixtures by plasma proteins. Chem Phys Lipids. 1991 Jan-Feb;57(1):49–57. doi: 10.1016/0009-3084(91)90048-g. [DOI] [PubMed] [Google Scholar]
  54. Venkitaraman A. R., Hall S. B., Whitsett J. A., Notter R. H. Enhancement of biophysical activity of lung surfactant extracts and phospholipid-apoprotein mixtures by surfactant protein A. Chem Phys Lipids. 1990 Dec;56(2-3):185–194. doi: 10.1016/0009-3084(90)90101-v. [DOI] [PubMed] [Google Scholar]
  55. Wang J, McGuire J. Surface Tension Kinetics of the Wild Type and Four Synthetic Stability Mutants of T4 Phage Lysozyme at the Air-Water Interface. J Colloid Interface Sci. 1997 Jan 15;185(2):317–323. doi: 10.1006/jcis.1996.4619. [DOI] [PubMed] [Google Scholar]
  56. Wang Z., Hall S. B., Notter R. H. Dynamic surface activity of films of lung surfactant phospholipids, hydrophobic proteins, and neutral lipids. J Lipid Res. 1995 Jun;36(6):1283–1293. [PubMed] [Google Scholar]
  57. Weis R. M., McConnell H. M. Two-dimensional chiral crystals of phospholipid. Nature. 1984 Jul 5;310(5972):47–49. doi: 10.1038/310047a0. [DOI] [PubMed] [Google Scholar]
  58. von Nahmen A., Schenk M., Sieber M., Amrein M. The structure of a model pulmonary surfactant as revealed by scanning force microscopy. Biophys J. 1997 Jan;72(1):463–469. doi: 10.1016/S0006-3495(97)78687-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES