Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Aug;77(2):934–942. doi: 10.1016/S0006-3495(99)76944-4

Rate determination in phosphorylation of shark rectal Na,K-ATPase by ATP: temperature sensitivity and effects of ADP.

F Cornelius 1
PMCID: PMC1300384  PMID: 10423438

Abstract

Phosphorylation of shark rectal Na,K-ATPase by ATP in the presence of Na(+) was characterized by chemical quench experiments and by stopped-flow RH421 fluorescence. The appearance of acid-stable phosphoenzyme was faster than the rate of fluorescence increase, suggesting that of the two acid-stable phosphoenzymes formed, RH421 exclusively detects formation of E(2)-P, which follows formation of E(1)-P. The stopped-flow RH421 fluorescence response to ATP phosphorylation was biphasic, with a major fast phase with k(obs) approximately 90 s(-1) and a minor slow phase with a k(obs) of approximately 9 s(-1) (20 degrees C, pH 7.4). The observed rate constants for both the slow and the fast phase could be fitted with identical second-degree functions of the ATP concentration with apparent binding constants of approximately 3.1 x 10(7) M(-1) and 1. 8 x 10(5) M(-1), respectively. Increasing [ADP] decreased k(obs) for the rate of the RH421 fluorescence response to ATP phosphorylation. This could be accounted for by the reaction of ADP with the initially formed E(1)-P followed by a conformational change to E(2)-P. The biphasic stopped-flow RH421 responses to ATP phosphorylation could be simulated, assuming that in the absence of K(+) the highly fluorescent E(2)-P is slowly transformed into the "K(+)-insensitive" E'(2)-P subconformation forming a side branch of the main cycle.

Full Text

The Full Text of this article is available as a PDF (141.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albers R. W. Biochemical aspects of active transport. Annu Rev Biochem. 1967;36:727–756. doi: 10.1146/annurev.bi.36.070167.003455. [DOI] [PubMed] [Google Scholar]
  2. Bühler R., Stürmer W., Apell H. J., Läuger P. Charge translocation by the Na,K-pump: I. Kinetics of local field changes studied by time-resolved fluorescence measurements. J Membr Biol. 1991 Apr;121(2):141–161. doi: 10.1007/BF01870529. [DOI] [PubMed] [Google Scholar]
  3. Campos M., Beaugé L. Na(+)-ATPase activity of Na(+),K(+)-ATPase. Reactivity of the E2 form during Na(+)-ATPase turnover. J Biol Chem. 1994 Jul 8;269(27):18028–18036. [PubMed] [Google Scholar]
  4. Clarke R. J., Kane D. J., Apell H. J., Roudna M., Bamberg E. Kinetics of Na(+)-dependent conformational changes of rabbit kidney Na+,K(+)-ATPase. Biophys J. 1998 Sep;75(3):1340–1353. doi: 10.1016/S0006-3495(98)74052-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cornelius F., Fedosova N. U., Klodos I. E2P phosphoforms of Na,K-ATPase. II. Interaction of substrate and cation-binding sites in Pi phosphorylation of Na,K-ATPase. Biochemistry. 1998 Nov 24;37(47):16686–16696. doi: 10.1021/bi981571v. [DOI] [PubMed] [Google Scholar]
  6. Cornelius F. Phosphorylation/dephosphorylation of reconstituted shark Na+,K(+)-ATPase: one phosphorylation site per alpha beta protomer. Biochim Biophys Acta. 1995 May 4;1235(2):197–204. doi: 10.1016/0005-2736(95)80005-z. [DOI] [PubMed] [Google Scholar]
  7. Cornelius F., Skou J. C. The sided action of Na+ and of K+ on reconstituted shark (Na+ + K+)-ATPase engaged in Na+-Na+ exchange accompanied by ATP hydrolysis. I. The ATP activation curve. Biochim Biophys Acta. 1987 Nov 13;904(2):353–364. doi: 10.1016/0005-2736(87)90385-3. [DOI] [PubMed] [Google Scholar]
  8. Cornelius F., Skou J. C. The sided action of Na+ on reconstituted shark Na+/K+-ATPase engaged in Na+-Na+ exchange accompanied by ATP hydrolysis. II. Transmembrane allosteric effects on Na+ affinity. Biochim Biophys Acta. 1988 Oct 6;944(2):223–232. doi: 10.1016/0005-2736(88)90435-x. [DOI] [PubMed] [Google Scholar]
  9. Fedosova N. U., Cornelius F., Klodos I. E2P phosphoforms of Na,K-ATPase. I. Comparison of phosphointermediates formed from ATP and Pi by their reactivity toward hydroxylamine and vanadate. Biochemistry. 1998 Sep 29;37(39):13634–13642. doi: 10.1021/bi980703h. [DOI] [PubMed] [Google Scholar]
  10. Fedosova N. U., Cornelius F., Klodos I. Fluorescent styryl dyes as probes for Na,K-ATPase reaction mechanism: significance of the charge of the hydrophilic moiety of RH dyes. Biochemistry. 1995 Dec 26;34(51):16806–16814. doi: 10.1021/bi00051a031. [DOI] [PubMed] [Google Scholar]
  11. Frank J., Zouni A., van Hoek A., Visser A. J., Clarke R. J. Interaction of the fluorescent probe RH421 with ribulose-1,5-bisphosphate carboxylase/oxygenase and with Na+,K(+)-ATPase membrane fragments. Biochim Biophys Acta. 1996 Apr 3;1280(1):51–64. doi: 10.1016/0005-2736(95)00277-4. [DOI] [PubMed] [Google Scholar]
  12. Heyse S., Wuddel I., Apell H. J., Stürmer W. Partial reactions of the Na,K-ATPase: determination of rate constants. J Gen Physiol. 1994 Aug;104(2):197–240. doi: 10.1085/jgp.104.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hobbs A. S., Albers R. W., Froehlich J. P. Potassium-induced changes in phosphorylation and dephosphorylation of (Na+ + K+)-ATPase observed in the transient state. J Biol Chem. 1980 Apr 25;255(8):3395–3402. [PubMed] [Google Scholar]
  14. Kane D. J., Fendler K., Grell E., Bamberg E., Taniguchi K., Froehlich J. P., Clarke R. J. Stopped-flow kinetic investigations of conformational changes of pig kidney Na+,K+-ATPase. Biochemistry. 1997 Oct 28;36(43):13406–13420. doi: 10.1021/bi970598w. [DOI] [PubMed] [Google Scholar]
  15. Kane D. J., Grell E., Bamberg E., Clarke R. J. Dephosphorylation kinetics of pig kidney Na+,K+-ATPase. Biochemistry. 1998 Mar 31;37(13):4581–4591. doi: 10.1021/bi972813e. [DOI] [PubMed] [Google Scholar]
  16. Keillor J. W., Jencks W. P. Phosphorylation of the sodium--potassium adenosinetriphosphatase proceeds through a rate-limiting conformational change followed by rapid phosphoryl transfer. Biochemistry. 1996 Feb 27;35(8):2750–2753. doi: 10.1021/bi951370g. [DOI] [PubMed] [Google Scholar]
  17. Klodos I., Fedosova N. U., Cornelius F. Fluorescent styryl dyes as probes for Na,K-ATPase reaction. Enzyme source and fluorescence response. Ann N Y Acad Sci. 1997 Nov 3;834:394–396. doi: 10.1111/j.1749-6632.1997.tb52280.x. [DOI] [PubMed] [Google Scholar]
  18. Kuzmic P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal Biochem. 1996 Jun 1;237(2):260–273. doi: 10.1006/abio.1996.0238. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Mårdh S., Zetterqvist O. Phosphorylation and dephosphorylation reactions of bovine brain (Na+-K+)-stimulated ATP phosphohydrolase studied by a rapid mixing technique. Biochim Biophys Acta. 1974 Jun 18;350(2):473–483. doi: 10.1016/0005-2744(74)90523-3. [DOI] [PubMed] [Google Scholar]
  21. Ottolenghi P. The reversible delipidation of a solubilized sodium-plus-potassium ion-dependent adenosine triphosphatase from the salt gland of the spiny dogfish. Biochem J. 1975 Oct;151(1):61–66. doi: 10.1042/bj1510061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Post R. L., Kume S., Tobin T., Orcutt B., Sen A. K. Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase. J Gen Physiol. 1969 Jul 1;54(1):306–326. doi: 10.1085/jgp.54.1.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Post R. L., Toda G., Rogers F. N. Phosphorylation by inorganic phosphate of sodium plus potassium ion transport adenosine triphosphatase. Four reactive states. J Biol Chem. 1975 Jan 25;250(2):691–701. [PubMed] [Google Scholar]
  24. Pratap P. R., Robinson J. D. Rapid kinetic analyses of the Na+/K(+)-ATPase distinguish among different criteria for conformational change. Biochim Biophys Acta. 1993 Sep 5;1151(1):89–98. doi: 10.1016/0005-2736(93)90075-b. [DOI] [PubMed] [Google Scholar]
  25. Skou J. C., Esmann M. Preparation of membrane Na+,K+-ATPase from rectal glands of Squalus acanthias. Methods Enzymol. 1988;156:43–46. doi: 10.1016/0076-6879(88)56006-8. [DOI] [PubMed] [Google Scholar]
  26. Skou J. C., Esmann M. The effects of Na+ and K+ on the conformational transitions of (Na+ + K+)-ATPase. Biochim Biophys Acta. 1983 Jul 28;746(1-2):101–113. doi: 10.1016/0167-4838(83)90016-x. [DOI] [PubMed] [Google Scholar]
  27. Sokolov V. S., Apell H. J., Corrie J. E., Trentham D. R. Fast transient currents in Na,K-ATPase induced by ATP concentration jumps from the P3-[1-(3',5'-dimethoxyphenyl)-2-phenyl-2-oxo]ethyl ester of ATP. Biophys J. 1998 May;74(5):2285–2298. doi: 10.1016/S0006-3495(98)77938-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stürmer W., Bühler R., Apell H. J., Läuger P. Charge translocation by the Na,K-pump: II. Ion binding and release at the extracellular face. J Membr Biol. 1991 Apr;121(2):163–176. doi: 10.1007/BF01870530. [DOI] [PubMed] [Google Scholar]
  29. Wuddel I., Apell H. J. Electrogenicity of the sodium transport pathway in the Na,K-ATPase probed by charge-pulse experiments. Biophys J. 1995 Sep;69(3):909–921. doi: 10.1016/S0006-3495(95)79965-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES