Abstract
Kinesin and nonclaret disjunctional protein (ncd) are two microtubule-based molecular motors that use energy from ATP hydrolysis to drive motion in opposite directions. They are structurally very similar and bind with similar orientations on microtubule. What is the origin of the different directionality? Is it some subtle feature of the structure of the motor domains, not apparent in x-ray diffraction studies, or possibly some difference near the neck regions far from the microtubule binding site? Perhaps because the motors function as dimers, the explanation involves differences in the strength of the interaction between the two motor monomers themselves. Here we present another possibility, based on a Brownian ratchet, in which the direction of motion of the motor is controlled by the chemical mechanism of ATP hydrolysis and is an inherent property of a single head. In contrast to conventional power stroke models, dissociation of the individual heads is not obligatory in the chemomechanical cycle, and the steps during which motion and force generation occurs are best described as one-dimensional thermally activated transitions that take place while both heads are attached to the microtubule. We show that our model is consistent with experiments on kinesin in which the velocity is measured as a function of external force and with the observed stiochiometry of one ATP/8-nm step at low load. Further, the model provides a way of understanding recent experiments on the ATP dependence of the variance (randomness) of the distance moved in a given time.
Full Text
The Full Text of this article is available as a PDF (102.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Astumian R. D., Bier M. Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. Biophys J. 1996 Feb;70(2):637–653. doi: 10.1016/S0006-3495(96)79605-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Astumian R. D., Derényi I. Fluctuation driven transport and models of molecular motors and pumps. Eur Biophys J. 1998;27(5):474–489. doi: 10.1007/s002490050158. [DOI] [PubMed] [Google Scholar]
- Astumian R. D. Thermodynamics and kinetics of a Brownian motor. Science. 1997 May 9;276(5314):917–922. doi: 10.1126/science.276.5314.917. [DOI] [PubMed] [Google Scholar]
- Astumian RD, Bier M. Fluctuation driven ratchets: Molecular motors. Phys Rev Lett. 1994 Mar 14;72(11):1766–1769. doi: 10.1103/PhysRevLett.72.1766. [DOI] [PubMed] [Google Scholar]
- Bier M, Astumian RD. Biasing Brownian motion in different directions in a 3-state fluctuating potential and an application for the separation of small particles. Phys Rev Lett. 1996 May 27;76(22):4277–4280. doi: 10.1103/PhysRevLett.76.4277. [DOI] [PubMed] [Google Scholar]
- Case R. B., Pierce D. W., Hom-Booher N., Hart C. L., Vale R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell. 1997 Sep 5;90(5):959–966. doi: 10.1016/s0092-8674(00)80360-8. [DOI] [PubMed] [Google Scholar]
- Coppin C. M., Pierce D. W., Hsu L., Vale R. D. The load dependence of kinesin's mechanical cycle. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8539–8544. doi: 10.1073/pnas.94.16.8539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Derényi I., Vicsek T. The kinesin walk: a dynamic model with elastically coupled heads. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6775–6779. doi: 10.1073/pnas.93.13.6775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doering CR, Horsthemke W, Riordan J. Nonequilibrium fluctuation-induced transport. Phys Rev Lett. 1994 May 9;72(19):2984–2987. doi: 10.1103/PhysRevLett.72.2984. [DOI] [PubMed] [Google Scholar]
- Fenn W. O. The relation between the work performed and the energy liberated in muscular contraction. J Physiol. 1924 May 23;58(6):373–395. doi: 10.1113/jphysiol.1924.sp002141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert S. P., Moyer M. L., Johnson K. A. Alternating site mechanism of the kinesin ATPase. Biochemistry. 1998 Jan 20;37(3):792–799. doi: 10.1021/bi971117b. [DOI] [PubMed] [Google Scholar]
- Gilbert S. P., Webb M. R., Brune M., Johnson K. A. Pathway of processive ATP hydrolysis by kinesin. Nature. 1995 Feb 23;373(6516):671–676. doi: 10.1038/373671a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
- Hackney D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6865–6869. doi: 10.1073/pnas.91.15.6865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hancock W. O., Howard J. Processivity of the motor protein kinesin requires two heads. J Cell Biol. 1998 Mar 23;140(6):1395–1405. doi: 10.1083/jcb.140.6.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henningsen U., Schliwa M. Reversal in the direction of movement of a molecular motor. Nature. 1997 Sep 4;389(6646):93–96. doi: 10.1038/38022. [DOI] [PubMed] [Google Scholar]
- Higuchi H., Muto E., Inoue Y., Yanagida T. Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4395–4400. doi: 10.1073/pnas.94.9.4395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirose K., Lockhart A., Cross R. A., Amos L. A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9539–9544. doi: 10.1073/pnas.93.18.9539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard J. Molecular motors: structural adaptations to cellular functions. Nature. 1997 Oct 9;389(6651):561–567. doi: 10.1038/39247. [DOI] [PubMed] [Google Scholar]
- Hua W., Young E. C., Fleming M. L., Gelles J. Coupling of kinesin steps to ATP hydrolysis. Nature. 1997 Jul 24;388(6640):390–393. doi: 10.1038/41118. [DOI] [PubMed] [Google Scholar]
- Hunt A. J., Gittes F., Howard J. The force exerted by a single kinesin molecule against a viscous load. Biophys J. 1994 Aug;67(2):766–781. doi: 10.1016/S0006-3495(94)80537-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jencks W. P. How does a calcium pump pump calcium? J Biol Chem. 1989 Nov 15;264(32):18855–18858. [PubMed] [Google Scholar]
- Kull F. J., Sablin E. P., Lau R., Fletterick R. J., Vale R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature. 1996 Apr 11;380(6574):550–555. doi: 10.1038/380550a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leibler S., Huse D. A. Porters versus rowers: a unified stochastic model of motor proteins. J Cell Biol. 1993 Jun;121(6):1357–1368. doi: 10.1083/jcb.121.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma Y. Z., Taylor E. W. Kinetic mechanism of a monomeric kinesin construct. J Biol Chem. 1997 Jan 10;272(2):717–723. doi: 10.1074/jbc.272.2.717. [DOI] [PubMed] [Google Scholar]
- Magnasco MO. Forced thermal ratchets. Phys Rev Lett. 1993 Sep 6;71(10):1477–1481. doi: 10.1103/PhysRevLett.71.1477. [DOI] [PubMed] [Google Scholar]
- Meyhöfer E., Howard J. The force generated by a single kinesin molecule against an elastic load. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):574–578. doi: 10.1073/pnas.92.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada Y., Hirokawa N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science. 1999 Feb 19;283(5405):1152–1157. doi: 10.1126/science.283.5405.1152. [DOI] [PubMed] [Google Scholar]
- Pechatnikova E., Taylor E. W. Kinetic mechanism of monomeric non-claret disjunctional protein (Ncd) ATPase. J Biol Chem. 1997 Dec 5;272(49):30735–30740. doi: 10.1074/jbc.272.49.30735. [DOI] [PubMed] [Google Scholar]
- Peskin C. S., Oster G. Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys J. 1995 Apr;68(4 Suppl):202S–211S. [PMC free article] [PubMed] [Google Scholar]
- Prost J, Chauwin JF, Peliti L, Ajdari A. Asymmetric pumping of particles. Phys Rev Lett. 1994 Apr 18;72(16):2652–2655. doi: 10.1103/PhysRevLett.72.2652. [DOI] [PubMed] [Google Scholar]
- Romberg L., Pierce D. W., Vale R. D. Role of the kinesin neck region in processive microtubule-based motility. J Cell Biol. 1998 Mar 23;140(6):1407–1416. doi: 10.1083/jcb.140.6.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sablin E. P., Kull F. J., Cooke R., Vale R. D., Fletterick R. J. Crystal structure of the motor domain of the kinesin-related motor ncd. Nature. 1996 Apr 11;380(6574):555–559. doi: 10.1038/380555a0. [DOI] [PubMed] [Google Scholar]
- Schnitzer M. J., Block S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature. 1997 Jul 24;388(6640):386–390. doi: 10.1038/41111. [DOI] [PubMed] [Google Scholar]
- Svoboda K., Block S. M. Force and velocity measured for single kinesin molecules. Cell. 1994 Jun 3;77(5):773–784. doi: 10.1016/0092-8674(94)90060-4. [DOI] [PubMed] [Google Scholar]
- Svoboda K., Mitra P. P., Block S. M. Fluctuation analysis of motor protein movement and single enzyme kinetics. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11782–11786. doi: 10.1073/pnas.91.25.11782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svoboda K., Schmidt C. F., Schnapp B. J., Block S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993 Oct 21;365(6448):721–727. doi: 10.1038/365721a0. [DOI] [PubMed] [Google Scholar]
- Vale R. D., Funatsu T., Pierce D. W., Romberg L., Harada Y., Yanagida T. Direct observation of single kinesin molecules moving along microtubules. Nature. 1996 Apr 4;380(6573):451–453. doi: 10.1038/380451a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale R. D., Soll D. R., Gibbons I. R. One-dimensional diffusion of microtubules bound to flagellar dynein. Cell. 1989 Dec 1;59(5):915–925. doi: 10.1016/0092-8674(89)90614-4. [DOI] [PubMed] [Google Scholar]
- Young E. C., Mahtani H. K., Gelles J. One-headed kinesin derivatives move by a nonprocessive, low-duty ratio mechanism unlike that of two-headed kinesin. Biochemistry. 1998 Mar 10;37(10):3467–3479. doi: 10.1021/bi972172n. [DOI] [PubMed] [Google Scholar]
- Young M. C., Kuhl S. B., von Hippel P. H. Kinetic theory of ATP-driven translocases on one-dimensional polymer lattices. J Mol Biol. 1994 Feb 4;235(5):1436–1446. doi: 10.1006/jmbi.1994.1099. [DOI] [PubMed] [Google Scholar]