Abstract
The kinetic mechanism of the nonclaret disjunctional protein (Ncd) motor was investigated using the dimer termed MC1 (residues 209-700), which has been shown to exhibit negative-end directed motility (Chandra et al., 1993). The kinetic properties are similar to those of the monomeric Ncd motor domain (Pechatnikova and Taylor, 1997). The maximum steady-state ATPase activity of 1.5 s(-1) is half as large as for the monomeric motor. Dissociation constants in the presence of nucleotides showed the same trend but with approximately a two-fold decrease in the values: K(d) values are 1.0 microM for ADP-AlF(4), 1.1 microM for ATPgammaS, 1.5 microM for ATP, 3 microM for ADP, and 10 microM for ADP-vanadate (in 25 mM NaCl, 22 degrees C). The apparent second-order rate constants for the binding of ATP and ADP to the microtubule-motor complex (MtMC1) are 2 microM(-1) s(-1). Based on measurements at high microtubule concentrations the kinetic steps were fitted to the scheme,[see text] where N refers to one head of the dimer and T, D, and P stand for ATP, ADP, and inorganic phosphate. k(1) and k(-4) are the first-order rate constants of the transition induced by the binding of mant ATP and mant ADP respectively. ADP release is the main rate-limiting step in the MtMC1 mechanism. The binding of the MC1-mant ADP complex to microtubules released less than half of the mant ADP (alternating site reactivity). The second mant ADP is only released by the binding of nucleotides that dissociate the MtMC1 complex (ATP and ADP but not AMPPNP). The apparent rate constant for dissociation of the second mant ADP is four times smaller than the first and much smaller than the rate of dissociation of MtMC1 by ATP or ADP. These results are explained by a model in which MC1.ADP is first dissociated from the microtubule by ATP, followed by rebinding to the microtubule by the ADP-containing head. Ncd may follow a different reaction pathway than does kinesin, but the differences in rate constants do not explain the opposite direction of motion. The kinetic evidence and the high ratio of motile velocity to ATPase support a nonprocessive, low duty cycle mechanism for the Ncd motor.
Full Text
The Full Text of this article is available as a PDF (133.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berliner E., Young E. C., Anderson K., Mahtani H. K., Gelles J. Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature. 1995 Feb 23;373(6516):718–721. doi: 10.1038/373718a0. [DOI] [PubMed] [Google Scholar]
- Brune M., Hunter J. L., Corrie J. E., Webb M. R. Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry. 1994 Jul 12;33(27):8262–8271. doi: 10.1021/bi00193a013. [DOI] [PubMed] [Google Scholar]
- Case R. B., Pierce D. W., Hom-Booher N., Hart C. L., Vale R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell. 1997 Sep 5;90(5):959–966. doi: 10.1016/s0092-8674(00)80360-8. [DOI] [PubMed] [Google Scholar]
- Chandra R., Salmon E. D., Erickson H. P., Lockhart A., Endow S. A. Structural and functional domains of the Drosophila ncd microtubule motor protein. J Biol Chem. 1993 Apr 25;268(12):9005–9013. [PubMed] [Google Scholar]
- Crevel I. M., Lockhart A., Cross R. A. Kinetic evidence for low chemical processivity in ncd and Eg5. J Mol Biol. 1997 Oct 17;273(1):160–170. doi: 10.1006/jmbi.1997.1319. [DOI] [PubMed] [Google Scholar]
- Crevel I. M., Lockhart A., Cross R. A. Weak and strong states of kinesin and ncd. J Mol Biol. 1996 Mar 22;257(1):66–76. doi: 10.1006/jmbi.1996.0147. [DOI] [PubMed] [Google Scholar]
- Endow S. A., Waligora K. W. Determinants of kinesin motor polarity. Science. 1998 Aug 21;281(5380):1200–1202. doi: 10.1126/science.281.5380.1200. [DOI] [PubMed] [Google Scholar]
- Foster K. A., Correia J. J., Gilbert S. P. Equilibrium binding studies of non-claret disjunctional protein (Ncd) reveal cooperative interactions between the motor domains. J Biol Chem. 1998 Dec 25;273(52):35307–35318. doi: 10.1074/jbc.273.52.35307. [DOI] [PubMed] [Google Scholar]
- Gilbert S. P., Moyer M. L., Johnson K. A. Alternating site mechanism of the kinesin ATPase. Biochemistry. 1998 Jan 20;37(3):792–799. doi: 10.1021/bi971117b. [DOI] [PubMed] [Google Scholar]
- Gilbert S. P., Webb M. R., Brune M., Johnson K. A. Pathway of processive ATP hydrolysis by kinesin. Nature. 1995 Feb 23;373(6516):671–676. doi: 10.1038/373671a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackney D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6865–6869. doi: 10.1073/pnas.91.15.6865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackney D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature. 1995 Oct 5;377(6548):448–450. doi: 10.1038/377448a0. [DOI] [PubMed] [Google Scholar]
- Henningsen U., Schliwa M. Reversal in the direction of movement of a molecular motor. Nature. 1997 Sep 4;389(6646):93–96. doi: 10.1038/38022. [DOI] [PubMed] [Google Scholar]
- Hirose K., Lockhart A., Cross R. A., Amos L. A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9539–9544. doi: 10.1073/pnas.93.18.9539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoenger A., Sack S., Thormählen M., Marx A., Müller J., Gross H., Mandelkow E. Image reconstructions of microtubules decorated with monomeric and dimeric kinesins: comparison with x-ray structure and implications for motility. J Cell Biol. 1998 Apr 20;141(2):419–430. doi: 10.1083/jcb.141.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hua W., Young E. C., Fleming M. L., Gelles J. Coupling of kinesin steps to ATP hydrolysis. Nature. 1997 Jul 24;388(6640):390–393. doi: 10.1038/41118. [DOI] [PubMed] [Google Scholar]
- Jiang W., Hackney D. D. Monomeric kinesin head domains hydrolyze multiple ATP molecules before release from a microtubule. J Biol Chem. 1997 Feb 28;272(9):5616–5621. doi: 10.1074/jbc.272.9.5616. [DOI] [PubMed] [Google Scholar]
- Kozielski F., Sack S., Marx A., Thormählen M., Schönbrunn E., Biou V., Thompson A., Mandelkow E. M., Mandelkow E. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell. 1997 Dec 26;91(7):985–994. doi: 10.1016/s0092-8674(00)80489-4. [DOI] [PubMed] [Google Scholar]
- Kull F. J., Sablin E. P., Lau R., Fletterick R. J., Vale R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature. 1996 Apr 11;380(6574):550–555. doi: 10.1038/380550a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lockhart A., Cross R. A. Kinetics and motility of the Eg5 microtubule motor. Biochemistry. 1996 Feb 20;35(7):2365–2373. doi: 10.1021/bi952318n. [DOI] [PubMed] [Google Scholar]
- Lockhart A., Cross R. A., McKillop D. F. ADP release is the rate-limiting step of the MT activated ATPase of non-claret disjunctional and kinesin. FEBS Lett. 1995 Jul 24;368(3):531–535. doi: 10.1016/0014-5793(95)00723-m. [DOI] [PubMed] [Google Scholar]
- Ma Y. Z., Taylor E. W. Interacting head mechanism of microtubule-kinesin ATPase. J Biol Chem. 1997 Jan 10;272(2):724–730. doi: 10.1074/jbc.272.2.724. [DOI] [PubMed] [Google Scholar]
- Ma Y. Z., Taylor E. W. Kinetic mechanism of a monomeric kinesin construct. J Biol Chem. 1997 Jan 10;272(2):717–723. doi: 10.1074/jbc.272.2.717. [DOI] [PubMed] [Google Scholar]
- Ma Y. Z., Taylor E. W. Kinetic mechanism of myofibril ATPase. Biophys J. 1994 May;66(5):1542–1553. doi: 10.1016/S0006-3495(94)80945-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma Y. Z., Taylor E. W. Mechanism of microtubule kinesin ATPase. Biochemistry. 1995 Oct 10;34(40):13242–13251. doi: 10.1021/bi00040a040. [DOI] [PubMed] [Google Scholar]
- Moyer M. L., Gilbert S. P., Johnson K. A. Pathway of ATP hydrolysis by monomeric and dimeric kinesin. Biochemistry. 1998 Jan 20;37(3):800–813. doi: 10.1021/bi9711184. [DOI] [PubMed] [Google Scholar]
- Pechatnikova E., Taylor E. W. Kinetic mechanism of monomeric non-claret disjunctional protein (Ncd) ATPase. J Biol Chem. 1997 Dec 5;272(49):30735–30740. doi: 10.1074/jbc.272.49.30735. [DOI] [PubMed] [Google Scholar]
- Romberg L., Pierce D. W., Vale R. D. Role of the kinesin neck region in processive microtubule-based motility. J Cell Biol. 1998 Mar 23;140(6):1407–1416. doi: 10.1083/jcb.140.6.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sablin E. P., Case R. B., Dai S. C., Hart C. L., Ruby A., Vale R. D., Fletterick R. J. Direction determination in the minus-end-directed kinesin motor ncd. Nature. 1998 Oct 22;395(6704):813–816. doi: 10.1038/27463. [DOI] [PubMed] [Google Scholar]
- Sablin E. P., Kull F. J., Cooke R., Vale R. D., Fletterick R. J. Crystal structure of the motor domain of the kinesin-related motor ncd. Nature. 1996 Apr 11;380(6574):555–559. doi: 10.1038/380555a0. [DOI] [PubMed] [Google Scholar]
- Schnitzer M. J., Block S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature. 1997 Jul 24;388(6640):386–390. doi: 10.1038/41111. [DOI] [PubMed] [Google Scholar]
- Shimizu T., Sablin E., Vale R. D., Fletterick R., Pechatnikova E., Taylor E. W. Expression, purification, ATPase properties, and microtubule-binding properties of the ncd motor domain. Biochemistry. 1995 Oct 10;34(40):13259–13266. doi: 10.1021/bi00040a042. [DOI] [PubMed] [Google Scholar]
- Shimizu T., Toyoshima Y. Y., Edamatsu M., Vale R. D. Comparison of the motile and enzymatic properties of two microtubule minus-end-directed motors, ncd and cytoplasmic dynein. Biochemistry. 1995 Feb 7;34(5):1575–1582. doi: 10.1021/bi00005a013. [DOI] [PubMed] [Google Scholar]
- Sosa H., Dias D. P., Hoenger A., Whittaker M., Wilson-Kubalek E., Sablin E., Fletterick R. J., Vale R. D., Milligan R. A. A model for the microtubule-Ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell. 1997 Jul 25;90(2):217–224. doi: 10.1016/s0092-8674(00)80330-x. [DOI] [PubMed] [Google Scholar]
- Uyeda T. Q., Kron S. J., Spudich J. A. Myosin step size. Estimation from slow sliding movement of actin over low densities of heavy meromyosin. J Mol Biol. 1990 Aug 5;214(3):699–710. doi: 10.1016/0022-2836(90)90287-V. [DOI] [PubMed] [Google Scholar]
- Vale R. D., Funatsu T., Pierce D. W., Romberg L., Harada Y., Yanagida T. Direct observation of single kinesin molecules moving along microtubules. Nature. 1996 Apr 4;380(6573):451–453. doi: 10.1038/380451a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young E. C., Mahtani H. K., Gelles J. One-headed kinesin derivatives move by a nonprocessive, low-duty ratio mechanism unlike that of two-headed kinesin. Biochemistry. 1998 Mar 10;37(10):3467–3479. doi: 10.1021/bi972172n. [DOI] [PubMed] [Google Scholar]