Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Aug;77(2):1017–1023. doi: 10.1016/S0006-3495(99)76952-3

Femtosecond spectroscopic observations of initial intermediates in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila.

S Devanathan 1, A Pacheco 1, L Ujj 1, M Cusanovich 1, G Tollin 1, S Lin 1, N Woodbury 1
PMCID: PMC1300392  PMID: 10423446

Abstract

Femtosecond time-resolved absorbance measurements were used to probe the subpicosecond primary events of the photoactive yellow protein (PYP), a 14-kD soluble photoreceptor from Ectothiorhodospira halophila. Previous picosecond absorption studies from our laboratory have revealed the presence of two new early photochemical intermediates in the PYP photocycle, I(0), which appears in </=3 ps, and I(0)(double dagger), which is formed in 220 ps, as well as stimulated emission from the PYP excited state. In the present study, kinetic measurements at two excitation wavelengths (395 nm and 460 nm) on either side of the PYP absorption maximum (446 nm) were undertaken using 100-fs pump and probe pulses. Global analysis over a range of probe wavelengths yielded time constants of 1.9 ps for the photochemical formation of the I(0) intermediate via the PYP excited state, and 3.4 ps for the repopulation of the ground state from the excited state. In addition to these pathways, 395 nm excitation also initiated an alternative route for PYP excitation and photochemistry, presumably involving a different excited electronic state of the chromophore. No photochemical intermediates formed before I(0) were observed. Based on these data, a quantum yield of 0.5-0.6 for I(0) formation was determined. The structural and mechanistic aspects of these results are discussed.

Full Text

The Full Text of this article is available as a PDF (125.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baca M., Borgstahl G. E., Boissinot M., Burke P. M., Williams D. R., Slater K. A., Getzoff E. D. Complete chemical structure of photoactive yellow protein: novel thioester-linked 4-hydroxycinnamyl chromophore and photocycle chemistry. Biochemistry. 1994 Dec 6;33(48):14369–14377. doi: 10.1021/bi00252a001. [DOI] [PubMed] [Google Scholar]
  2. Devanathan S., Genick U. K., Getzoff E. D., Meyer T. E., Cusanovich M. A., Tollin G. Preparation and properties of a 3,4-dihydroxycinnamic acid chromophore variant of the photoactive yellow protein. Arch Biochem Biophys. 1997 Apr 1;340(1):83–89. doi: 10.1006/abbi.1997.9902. [DOI] [PubMed] [Google Scholar]
  3. Genick U. K., Borgstahl G. E., Ng K., Ren Z., Pradervand C., Burke P. M., Srajer V., Teng T. Y., Schildkamp W., McRee D. E. Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science. 1997 Mar 7;275(5305):1471–1475. doi: 10.1126/science.275.5305.1471. [DOI] [PubMed] [Google Scholar]
  4. Genick U. K., Devanathan S., Meyer T. E., Canestrelli I. L., Williams E., Cusanovich M. A., Tollin G., Getzoff E. D. Active site mutants implicate key residues for control of color and light cycle kinetics of photoactive yellow protein. Biochemistry. 1997 Jan 7;36(1):8–14. doi: 10.1021/bi9622884. [DOI] [PubMed] [Google Scholar]
  5. Genick U. K., Soltis S. M., Kuhn P., Canestrelli I. L., Getzoff E. D. Structure at 0.85 A resolution of an early protein photocycle intermediate. Nature. 1998 Mar 12;392(6672):206–209. doi: 10.1038/32462. [DOI] [PubMed] [Google Scholar]
  6. Lewis J. W., Kliger D. S. Photointermediates of visual pigments. J Bioenerg Biomembr. 1992 Apr;24(2):201–210. doi: 10.1007/BF00762678. [DOI] [PubMed] [Google Scholar]
  7. Meyer T. E., Cusanovich M. A., Tollin G. Transient proton uptake and release is associated with the photocycle of the photoactive yellow protein from the purple phototrophic bacterium Ectothiorhodospira halophila. Arch Biochem Biophys. 1993 Nov 1;306(2):515–517. doi: 10.1006/abbi.1993.1545. [DOI] [PubMed] [Google Scholar]
  8. Meyer T. E., Fitch J. C., Bartsch R. G., Tollin G., Cusanovich M. A. Soluble cytochromes and a photoactive yellow protein isolated from the moderately halophilic purple phototrophic bacterium, Rhodospirillum salexigens. Biochim Biophys Acta. 1990 Apr 26;1016(3):364–370. doi: 10.1016/0005-2728(90)90170-9. [DOI] [PubMed] [Google Scholar]
  9. Meyer T. E. Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila. Biochim Biophys Acta. 1985 Jan 23;806(1):175–183. doi: 10.1016/0005-2728(85)90094-5. [DOI] [PubMed] [Google Scholar]
  10. Meyer T. E., Tollin G., Causgrove T. P., Cheng P., Blankenship R. E. Picosecond decay kinetics and quantum yield of fluorescence of the photoactive yellow protein from the halophilic purple phototrophic bacterium, Ectothiorhodospira halophila. Biophys J. 1991 May;59(5):988–991. doi: 10.1016/S0006-3495(91)82313-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meyer T. E., Tollin G., Hazzard J. H., Cusanovich M. A. Photoactive yellow protein from the purple phototrophic bacterium, Ectothiorhodospira halophila. Quantum yield of photobleaching and effects of temperature, alcohols, glycerol, and sucrose on kinetics of photobleaching and recovery. Biophys J. 1989 Sep;56(3):559–564. doi: 10.1016/S0006-3495(89)82703-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meyer T. E., Yakali E., Cusanovich M. A., Tollin G. Properties of a water-soluble, yellow protein isolated from a halophilic phototrophic bacterium that has photochemical activity analogous to sensory rhodopsin. Biochemistry. 1987 Jan 27;26(2):418–423. doi: 10.1021/bi00376a012. [DOI] [PubMed] [Google Scholar]
  13. Schoenlein R. W., Peteanu L. A., Mathies R. A., Shank C. V. The first step in vision: femtosecond isomerization of rhodopsin. Science. 1991 Oct 18;254(5030):412–415. doi: 10.1126/science.1925597. [DOI] [PubMed] [Google Scholar]
  14. Sprenger W. W., Hoff W. D., Armitage J. P., Hellingwerf K. J. The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein. J Bacteriol. 1993 May;175(10):3096–3104. doi: 10.1128/jb.175.10.3096-3104.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ujj L., Devanathan S., Meyer T. E., Cusanovich M. A., Tollin G., Atkinson G. H. New photocycle intermediates in the photoactive yellow protein from Ectothiorhodospira halophila: picosecond transient absorption spectroscopy. Biophys J. 1998 Jul;75(1):406–412. doi: 10.1016/S0006-3495(98)77525-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wang Q., Schoenlein R. W., Peteanu L. A., Mathies R. A., Shank C. V. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science. 1994 Oct 21;266(5184):422–424. doi: 10.1126/science.7939680. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES