Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Aug;77(2):1024–1035. doi: 10.1016/S0006-3495(99)76953-5

Spectral tuning in salamander visual pigments studied with dihydroretinal chromophores.

C L Makino 1, M Groesbeek 1, J Lugtenburg 1, D A Baylor 1
PMCID: PMC1300393  PMID: 10423447

Abstract

In visual pigments, opsin proteins regulate the spectral absorption of a retinal chromophore by mechanisms that change the energy level of the excited electronic state relative to the ground state. We have studied these mechanisms by using photocurrent recording to measure the spectral sensitivities of individual red rods and red (long-wavelength-sensitive) and blue (short-wavelength-sensitive) cones of salamander before and after replacing the native 3-dehydro 11-cis retinal chromophore with retinal analogs: 11-cis retinal, 3-dehydro 9-cis retinal, 9-cis retinal, and 5,6-dihydro 9-cis retinal. The protonated Schiff's bases of analogs with unsaturated bonds in the ring had broader spectra than the same chromophores bound to opsins. Saturation of the bonds in the ring reduced the spectral bandwidths of the protonated Schiff's bases and the opsin-bound chromophores and made them similar to each other. This indicates that torsion of the ring produces spectral broadening and that torsion is limited by opsin. Saturating the 5,6 double bond in retinal reduced the perturbation of the chromophore by opsin in red and in blue cones but not in red rods. Thus an interaction between opsin and the chromophoric ring shifts the spectral maxima of the red and blue cone pigments, but not that of the red rod pigment.

Full Text

The Full Text of this article is available as a PDF (133.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer S., Hope A., Partridge J. C. The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc Biol Sci. 1995 Dec 22;262(1365):289–295. doi: 10.1098/rspb.1995.0208. [DOI] [PubMed] [Google Scholar]
  2. Asenjo A. B., Rim J., Oprian D. D. Molecular determinants of human red/green color discrimination. Neuron. 1994 May;12(5):1131–1138. doi: 10.1016/0896-6273(94)90320-4. [DOI] [PubMed] [Google Scholar]
  3. Baylor D. A., Nunn B. J., Schnapf J. L. Spectral sensitivity of cones of the monkey Macaca fascicularis. J Physiol. 1987 Sep;390:145–160. doi: 10.1113/jphysiol.1987.sp016691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baylor D. A., Nunn B. J., Schnapf J. L. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J Physiol. 1984 Dec;357:575–607. doi: 10.1113/jphysiol.1984.sp015518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blatz P. E., Balasubramaniyan P., Balasubramaniyan V. Synthesis of all-trans-5,6-dihydroretinal, a new visual chromophore. J Am Chem Soc. 1968 Jun 5;90(12):3282–3283. doi: 10.1021/ja01014a079. [DOI] [PubMed] [Google Scholar]
  6. Blatz P. E., Dewhurst P. B., Balasubramaniyan P., Balasubramaniyan V. Preparation of a new visual pigment analogue of cattle opsin using 5,6-dihydroretinal. Nature. 1968 Jul 13;219(5150):169–170. doi: 10.1038/219169a0. [DOI] [PubMed] [Google Scholar]
  7. Blatz P. E., Dewhurst P. B., Balasubramaniyan V., Balasubramaniyan P., Lin M. Preparation and properties of new visual pigment analogues from 5,6-dihydroretinal and cattle opsi. Photochem Photobiol. 1970 Jan;11(1):1–15. doi: 10.1111/j.1751-1097.1970.tb05711.x. [DOI] [PubMed] [Google Scholar]
  8. Blatz P. E., Lin M., Balasubramaniyan P., Balasubramaniyan V., Dewhurst P. B. A new series of synthetic visual pigments from cattle opsin and homologs of retinal. J Am Chem Soc. 1969 Oct 8;91(21):5930–5931. doi: 10.1021/ja01049a069. [DOI] [PubMed] [Google Scholar]
  9. Blatz P. E., Mohler J. H., Navangul H. V. Anion-induced wavelength regulation of absorption maxima of Schiff bases of retinal. Biochemistry. 1972 Feb 29;11(5):848–855. doi: 10.1021/bi00755a026. [DOI] [PubMed] [Google Scholar]
  10. Bridges C. D. Spectroscopic properties of porphyropsins. Vision Res. 1967 May;7(5):349–369. doi: 10.1016/0042-6989(67)90044-2. [DOI] [PubMed] [Google Scholar]
  11. Calhoon R. D., Rando R. R. all-trans-retinoids and dihydroretinoids as probes of the role of chromophore structure in rhodopsin activation. Biochemistry. 1985 Nov 5;24(23):6446–6452. doi: 10.1021/bi00344a021. [DOI] [PubMed] [Google Scholar]
  12. Chang B. S., Crandall K. A., Carulli J. P., Hartl D. L. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. Mol Phylogenet Evol. 1995 Mar;4(1):31–43. doi: 10.1006/mpev.1995.1004. [DOI] [PubMed] [Google Scholar]
  13. Chen J. G., Nakamura T., Ebrey T. G., Ok H., Konno K., Derguini F., Nakanishi K., Honig B. Wavelength regulation in iodopsin, a cone pigment. Biophys J. 1989 Apr;55(4):725–729. doi: 10.1016/S0006-3495(89)82871-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chen N., Ma J. X., Corson D. W., Hazard E. S., Crouch R. K. Molecular cloning of a rhodopsin gene from salamander rods. Invest Ophthalmol Vis Sci. 1996 Aug;37(9):1907–1913. [PubMed] [Google Scholar]
  15. Chiu M. I., Zack D. J., Wang Y., Nathans J. Murine and bovine blue cone pigment genes: cloning and characterization of two new members of the S family of visual pigments. Genomics. 1994 May 15;21(2):440–443. doi: 10.1006/geno.1994.1292. [DOI] [PubMed] [Google Scholar]
  16. Cornwall M. C., MacNichol E. F., Jr, Fein A. Absorptance and spectral sensitivity measurements of rod photoreceptors of the tiger salamander, Ambystoma tigrinum. Vision Res. 1984;24(11):1651–1659. doi: 10.1016/0042-6989(84)90323-7. [DOI] [PubMed] [Google Scholar]
  17. Crouch R. K., Chader G. J., Wiggert B., Pepperberg D. R. Retinoids and the visual process. Photochem Photobiol. 1996 Oct;64(4):613–621. doi: 10.1111/j.1751-1097.1996.tb03114.x. [DOI] [PubMed] [Google Scholar]
  18. Dawis S. M. Polynomial expressions of pigment nomograms. Vision Res. 1981;21(9):1427–1430. doi: 10.1016/0042-6989(81)90250-9. [DOI] [PubMed] [Google Scholar]
  19. DeCaluwé G. L., Bovee-Geurts P. H., Rath P., Rothschild K. J., de Grip W. J. Effect of carboxyl mutations on functional properties of bovine rhodopsin. Biophys Chem. 1995 Sep-Oct;56(1-2):79–87. doi: 10.1016/0301-4622(95)00018-s. [DOI] [PubMed] [Google Scholar]
  20. Ebrey T. G., Honig B. New wavelength dependent visual pigment nomograms. Vision Res. 1977;17(1):147–151. doi: 10.1016/0042-6989(77)90213-9. [DOI] [PubMed] [Google Scholar]
  21. Fager L. Y., Fager R. S. Halide control of color of the chicken cone pigment iodopsin. Exp Eye Res. 1979 Oct;29(4):401–408. doi: 10.1016/0014-4835(79)90056-3. [DOI] [PubMed] [Google Scholar]
  22. Fasick J. I., Cronin T. W., Hunt D. M., Robinson P. R. The visual pigments of the bottlenose dolphin (Tursiops truncatus). Vis Neurosci. 1998 Jul-Aug;15(4):643–651. doi: 10.1017/s0952523898154056. [DOI] [PubMed] [Google Scholar]
  23. Fasick J. I., Robsinson P. R. Mechanism of spectral tuning in the dolphin visual pigments. Biochemistry. 1998 Jan 13;37(2):433–438. doi: 10.1021/bi972500j. [DOI] [PubMed] [Google Scholar]
  24. Fukada Y., Okano T., Shichida Y., Yoshizawa T., Trehan A., Mead D., Denny M., Asato A. E., Liu R. S. Comparative study on the chromophore binding sites of rod and red-sensitive cone visual pigments by use of synthetic retinal isomers and analogues. Biochemistry. 1990 Mar 27;29(12):3133–3140. doi: 10.1021/bi00464a033. [DOI] [PubMed] [Google Scholar]
  25. Fukada Y., Yoshizawa T., Ito M., Tsukida K. Activation of phosphodiesterase in frog rod outer segment by rhodopsin analogues. Biochim Biophys Acta. 1982 Nov 9;708(2):112–117. doi: 10.1016/0167-4838(82)90210-2. [DOI] [PubMed] [Google Scholar]
  26. HUBBARD R., WALD G. Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J Gen Physiol. 1952 Nov;36(2):269–315. doi: 10.1085/jgp.36.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Harbison G. S., Smith S. O., Pardoen J. A., Courtin J. M., Lugtenburg J., Herzfeld J., Mathies R. A., Griffin R. G. Solid-state 13C NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin. Biochemistry. 1985 Nov 19;24(24):6955–6962. doi: 10.1021/bi00345a031. [DOI] [PubMed] [Google Scholar]
  28. Hisatomi O., Kayada S., Aoki Y., Iwasa T., Tokunaga F. Phylogenetic relationships among vertebrate visual pigments. Vision Res. 1994 Dec;34(23):3097–3102. doi: 10.1016/0042-6989(94)90075-2. [DOI] [PubMed] [Google Scholar]
  29. Hisatomi O., Satoh T., Tokunaga F. The primary structure and distribution of killifish visual pigments. Vision Res. 1997 Nov;37(22):3089–3096. doi: 10.1016/s0042-6989(97)00115-6. [DOI] [PubMed] [Google Scholar]
  30. Honig B., Hudson B., Sykes B. D., Karplus M. Ring orientation in -ionone and retinals. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1289–1293. doi: 10.1073/pnas.68.6.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hope A. J., Partridge J. C., Dulai K. S., Hunt D. M. Mechanisms of wavelength tuning in the rod opsins of deep-sea fishes. Proc Biol Sci. 1997 Feb 22;264(1379):155–163. doi: 10.1098/rspb.1997.0023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hunt D. M., Fitzgibbon J., Slobodyanyuk S. J., Bowmaker J. K. Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Res. 1996 May;36(9):1217–1224. doi: 10.1016/0042-6989(95)00228-6. [DOI] [PubMed] [Google Scholar]
  33. Hárosi F. I. Absorption spectra and linear dichroism of some amphibian photoreceptors. J Gen Physiol. 1975 Sep;66(3):357–382. doi: 10.1085/jgp.66.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hárosi F. I. Spectral relations of cone pigments in goldfish. J Gen Physiol. 1976 Jul;68(1):65–80. doi: 10.1085/jgp.68.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Johnson R. L., Grant K. B., Zankel T. C., Boehm M. F., Merbs S. L., Nathans J., Nakanishi K. Cloning and expression of goldfish opsin sequences. Biochemistry. 1993 Jan 12;32(1):208–214. doi: 10.1021/bi00052a027. [DOI] [PubMed] [Google Scholar]
  36. Jones G. J., Crouch R. K., Wiggert B., Cornwall M. C., Chader G. J. Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9606–9610. doi: 10.1073/pnas.86.23.9606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Jones G. J., Fein A., MacNichol E. F., Jr, Cornwall M. C. Visual pigment bleaching in isolated salamander retinal cones. Microspectrophotometry and light adaptation. J Gen Physiol. 1993 Sep;102(3):483–502. doi: 10.1085/jgp.102.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. KROPF A., HUBBARD R. The mechanism of bleaching rhodopsin. Ann N Y Acad Sci. 1959 Nov 12;74(2):266–280. doi: 10.1111/j.1749-6632.1958.tb39550.x. [DOI] [PubMed] [Google Scholar]
  39. Kefalov V. J., Carter Cornwall M., Crouch R. K. Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors. J Gen Physiol. 1999 Mar;113(3):491–503. doi: 10.1085/jgp.113.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kleinschmidt J., Harosi F. I. Anion sensitivity and spectral tuning of cone visual pigments in situ. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9181–9185. doi: 10.1073/pnas.89.19.9181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Knowles A. The chloride effect in chicken red cone receptors. Vision Res. 1980;20(6):475–483. doi: 10.1016/0042-6989(80)90122-4. [DOI] [PubMed] [Google Scholar]
  42. Kochendoerfer G. G., Wang Z., Oprian D. D., Mathies R. A. Resonance Raman examination of the wavelength regulation mechanism in human visual pigments. Biochemistry. 1997 Jun 3;36(22):6577–6587. doi: 10.1021/bi970322o. [DOI] [PubMed] [Google Scholar]
  43. Koutalos Y., Ebrey T. G., Tsuda M., Odashima K., Lien T., Park M. H., Shimizu N., Derguini F., Nakanishi K., Gilson H. R. Regeneration of bovine and octopus opsins in situ with natural and artificial retinals. Biochemistry. 1989 Mar 21;28(6):2732–2739. doi: 10.1021/bi00432a055. [DOI] [PubMed] [Google Scholar]
  44. Lamb T. D. Photoreceptor spectral sensitivities: common shape in the long-wavelength region. Vision Res. 1995 Nov;35(22):3083–3091. doi: 10.1016/0042-6989(95)00114-f. [DOI] [PubMed] [Google Scholar]
  45. Lin S. W., Imamoto Y., Fukada Y., Shichida Y., Yoshizawa T., Mathies R. A. What makes red visual pigments red? A resonance Raman microprobe study of retinal chromophore structure in iodopsin. Biochemistry. 1994 Mar 1;33(8):2151–2160. doi: 10.1021/bi00174a023. [DOI] [PubMed] [Google Scholar]
  46. Lin S. W., Kochendoerfer G. G., Carroll K. S., Wang D., Mathies R. A., Sakmar T. P. Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants. J Biol Chem. 1998 Sep 18;273(38):24583–24591. doi: 10.1074/jbc.273.38.24583. [DOI] [PubMed] [Google Scholar]
  47. Loppnow G. R., Barry B. A., Mathies R. A. Why are blue visual pigments blue? A resonance Raman microprobe study. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1515–1518. doi: 10.1073/pnas.86.5.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. MacNichol E. F., Jr A unifying presentation of photopigment spectra. Vision Res. 1986;26(9):1543–1556. doi: 10.1016/0042-6989(86)90174-4. [DOI] [PubMed] [Google Scholar]
  49. Makino C. L., Dodd R. L. Multiple visual pigments in a photoreceptor of the salamander retina. J Gen Physiol. 1996 Jul;108(1):27–34. doi: 10.1085/jgp.108.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Makino C. L., Kraft T. W., Mathies R. A., Lugtenburg J., Miley M. E., van der Steen R., Baylor D. A. Effects of modified chromophores on the spectral sensitivity of salamander, squirrel and macaque cones. J Physiol. 1990 May;424:545–560. doi: 10.1113/jphysiol.1990.sp018082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Makino C. L., Taylor W. R., Baylor D. A. Rapid charge movements and photosensitivity of visual pigments in salamander rods and cones. J Physiol. 1991 Oct;442:761–780. doi: 10.1113/jphysiol.1991.sp018818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Mathies R., Stryer L. Retinal has a highly dipolar vertically excited singlet state: implications for vision. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2169–2173. doi: 10.1073/pnas.73.7.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Matsumoto H., Yoshizawa T. Existence of a beta-ionone ring-binding site in the rhodopsin molecule. Nature. 1975 Dec 11;258(5535):523–526. doi: 10.1038/258523a0. [DOI] [PubMed] [Google Scholar]
  54. Mollevanger L. C., Kentgens A. P., Pardoen J. A., Courtin J. M., Veeman W. S., Lugtenburg J., de Grip W. J. High-resolution solid-state 13C-NMR study of carbons C-5 and C-12 of the chromophore of bovine rhodopsin. Evidence for a 6-S-cis conformation with negative-charge perturbation near C-12. Eur J Biochem. 1987 Feb 16;163(1):9–14. doi: 10.1111/j.1432-1033.1987.tb10729.x. [DOI] [PubMed] [Google Scholar]
  55. Naka K. I., Rushton W. A. S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol. 1966 Aug;185(3):536–555. doi: 10.1113/jphysiol.1966.sp008001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Nakanishi K., Balogh-Nair V., Gawinowicz M. A., Arnaboldi M., Motto M., Honig B. Double point charge model for visual pigments; evidence from dihydrorhodopsins. Photochem Photobiol. 1979 Apr;29(4):657–660. doi: 10.1111/j.1751-1097.1979.tb07745.x. [DOI] [PubMed] [Google Scholar]
  57. Nakayama T. A., Khorana H. G. Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J Biol Chem. 1991 Mar 5;266(7):4269–4275. [PubMed] [Google Scholar]
  58. Nakayama T. A., Khorana H. G. Orientation of retinal in bovine rhodopsin determined by cross-linking using a photoactivatable analog of 11-cis-retinal. J Biol Chem. 1990 Sep 15;265(26):15762–15769. [PubMed] [Google Scholar]
  59. Nathans J. Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. Biochemistry. 1990 Oct 16;29(41):9746–9752. doi: 10.1021/bi00493a034. [DOI] [PubMed] [Google Scholar]
  60. Nathans J. Determinants of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. Biochemistry. 1990 Jan 30;29(4):937–942. doi: 10.1021/bi00456a013. [DOI] [PubMed] [Google Scholar]
  61. Neitz M., Neitz J., Jacobs G. H. Spectral tuning of pigments underlying red-green color vision. Science. 1991 May 17;252(5008):971–974. doi: 10.1126/science.1903559. [DOI] [PubMed] [Google Scholar]
  62. Okano T., Fukada Y., Artamonov I. D., Yoshizawa T. Purification of cone visual pigments from chicken retina. Biochemistry. 1989 Oct 31;28(22):8848–8856. doi: 10.1021/bi00448a025. [DOI] [PubMed] [Google Scholar]
  63. Okano T., Fukada Y., Shichida Y., Yoshizawa T. Photosensitivities of iodopsin and rhodopsins. Photochem Photobiol. 1992 Dec;56(6):995–1001. doi: 10.1111/j.1751-1097.1992.tb09722.x. [DOI] [PubMed] [Google Scholar]
  64. Okano T., Kojima D., Fukada Y., Shichida Y., Yoshizawa T. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5932–5936. doi: 10.1073/pnas.89.13.5932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Palacios A. G., Srivastava R., Goldsmith T. H. Spectral and polarization sensitivity of photocurrents of amphibian rods in the visible and ultraviolet. Vis Neurosci. 1998 Mar-Apr;15(2):319–331. doi: 10.1017/s0952523898152136. [DOI] [PubMed] [Google Scholar]
  66. Sakmar T. P., Franke R. R., Khorana H. G. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8309–8313. doi: 10.1073/pnas.86.21.8309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Shieh T., Han M., Sakmar T. P., Smith S. O. The steric trigger in rhodopsin activation. J Mol Biol. 1997 Jun 13;269(3):373–384. doi: 10.1006/jmbi.1997.1035. [DOI] [PubMed] [Google Scholar]
  68. Smith S. O., Palings I., Copié V., Raleigh D. P., Courtin J., Pardoen J. A., Lugtenburg J., Mathies R. A., Griffin R. G. Low-temperature solid-state 13C NMR studies of the retinal chromophore in rhodopsin. Biochemistry. 1987 Mar 24;26(6):1606–1611. doi: 10.1021/bi00380a018. [DOI] [PubMed] [Google Scholar]
  69. Sun H., Macke J. P., Nathans J. Mechanisms of spectral tuning in the mouse green cone pigment. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8860–8865. doi: 10.1073/pnas.94.16.8860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. WALD G. Vision. Fed Proc. 1953 Jun;12(2):606–611. [PubMed] [Google Scholar]
  71. Yoshizawa T., Fukada Y. Activation of phosphodiesterase by rhodopsin and its analogues. Biophys Struct Mech. 1983;9(4):245–258. doi: 10.1007/BF00535660. [DOI] [PubMed] [Google Scholar]
  72. Zhukovsky E. A., Oprian D. D. Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science. 1989 Nov 17;246(4932):928–930. doi: 10.1126/science.2573154. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES