Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Aug;77(2):1052–1063. doi: 10.1016/S0006-3495(99)76955-9

A spectroscopic and calorimetric investigation on the thermal stability of the Cys3Ala/Cys26Ala azurin mutant.

R Guzzi 1, L Sportelli 1, C La Rosa 1, D Milardi 1, D Grasso 1, M P Verbeet 1, G W Canters 1
PMCID: PMC1300395  PMID: 10423449

Abstract

The disulfide bond connecting Cys-3 and Cys-26 in wild type azurin has been removed to study the contribution of the -SS- bond to the high thermal resistance previously registered for this protein (. J. Phys. Chem. 99:14864-14870). Site-directed mutagenesis was used to replace both cysteines for alanines. The characterization of the Cys-3Ala/Cys-26Ala azurin mutant has been carried out by means of electron paramagnetic resonance spectroscopy at 77 K, UV-VIS optical absorption, fluorescence emission and circular dichroism at room temperature. The results show that the spectral features of the Cys-3Ala/Cys-26Ala azurin resemble those of the wild type azurin, indicating that the double mutation does not affect either the formation of the protein's overall structure or the assembly of the metal-binding site. The thermal unfolding of the Cys-3Ala/Cys-26Ala azurin has been followed by differential scanning calorimetry, optical absorption variation at lambda(max) = 625 nm, and fluorescence emission using 295 nm as excitation wavelength. The analysis of the data shows that the thermal transition from the native to the denaturated state of the modified azurin follows the same multistep unfolding pathway as observed in wild type azurin. However, the removal of the disulfide bridge results in a dramatic reduction of the thermodynamic stability of the protein. In fact, the transition temperatures registered by the different techniques are down-shifted by about 20 degrees C with respect to wild type azurin. Moreover, the Gibbs free energy value is about half of that found for the native azurin. These results suggest that the disulfide bridge is a structural element that significantly contributes to the high stability of wild type azurin.

Full Text

The Full Text of this article is available as a PDF (171.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aqualino A, Brill AS, Bryce GF, Gerstman BS. Correlated distributions in g and A tensors at a biologically active low-symmetry cupric site. Phys Rev A. 1991 Oct 15;44(8):5257–5271. doi: 10.1103/physreva.44.5257. [DOI] [PubMed] [Google Scholar]
  2. Bonander N., Karlsson B. G., Vänngård T. Disruption of the disulfide bridge in azurin from Pseudomonas aeruginosa. Biochim Biophys Acta. 1995 Aug 16;1251(1):48–54. doi: 10.1016/0167-4838(95)00059-4. [DOI] [PubMed] [Google Scholar]
  3. Canters G. W. The azurin gene from Pseudomonas aeruginosa codes for a pre-protein with a signal peptide. Cloning and sequencing of the azurin gene. FEBS Lett. 1987 Feb 9;212(1):168–172. doi: 10.1016/0014-5793(87)81579-x. [DOI] [PubMed] [Google Scholar]
  4. Clarke J., Fersht A. R. Engineered disulfide bonds as probes of the folding pathway of barnase: increasing the stability of proteins against the rate of denaturation. Biochemistry. 1993 Apr 27;32(16):4322–4329. doi: 10.1021/bi00067a022. [DOI] [PubMed] [Google Scholar]
  5. Connelly P., Ghosaini L., Hu C. Q., Kitamura S., Tanaka A., Sturtevant J. M. A differential scanning calorimetric study of the thermal unfolding of seven mutant forms of phage T4 lysozyme. Biochemistry. 1991 Feb 19;30(7):1887–1891. doi: 10.1021/bi00221a022. [DOI] [PubMed] [Google Scholar]
  6. Cooper A., Eyles S. J., Radford S. E., Dobson C. M. Thermodynamic consequences of the removal of a disulphide bridge from hen lysozyme. J Mol Biol. 1992 Jun 20;225(4):939–943. doi: 10.1016/0022-2836(92)90094-z. [DOI] [PubMed] [Google Scholar]
  7. Creighton T. E. Intermediates in the refolding of reduced pancreatic trypsin inhibitor. J Mol Biol. 1974 Aug 15;87(3):579–602. doi: 10.1016/0022-2836(74)90105-3. [DOI] [PubMed] [Google Scholar]
  8. Doig A. J., Williams D. H. Is the hydrophobic effect stabilizing or destabilizing in proteins? The contribution of disulphide bonds to protein stability. J Mol Biol. 1991 Jan 20;217(2):389–398. doi: 10.1016/0022-2836(91)90551-g. [DOI] [PubMed] [Google Scholar]
  9. Gokhale R. S., Agarwalla S., Francis V. S., Santi D. V., Balaram P. Thermal stabilization of thymidylate synthase by engineering two disulfide bridges across the dimer interface. J Mol Biol. 1994 Jan 7;235(1):89–94. doi: 10.1016/s0022-2836(05)80018-x. [DOI] [PubMed] [Google Scholar]
  10. Guptasarma P. Resolving multiple protein conformers in equilibrium unfolding reactions: a time-resolved emission spectroscopic (TRES) study of Azurin. Biophys Chem. 1997 Apr 22;65(2-3):221–228. doi: 10.1016/s0301-4622(96)02244-2. [DOI] [PubMed] [Google Scholar]
  11. Guss J. M., Bartunik H. D., Freeman H. C. Accuracy and precision in protein structure analysis: restrained least-squares refinement of the structure of poplar plastocyanin at 1.33 A resolution. Acta Crystallogr B. 1992 Dec 1;48(Pt 6):790–811. doi: 10.1107/s0108768192004270. [DOI] [PubMed] [Google Scholar]
  12. Hansen J. E., Longworth J. W., Fleming G. R. Photophysics of metalloazurins. Biochemistry. 1990 Aug 7;29(31):7329–7338. doi: 10.1021/bi00483a024. [DOI] [PubMed] [Google Scholar]
  13. Inaka K., Taniyama Y., Kikuchi M., Morikawa K., Matsushima M. The crystal structure of a mutant human lysozyme C77/95A with increased secretion efficiency in yeast. J Biol Chem. 1991 Jul 5;266(19):12599–12603. [PubMed] [Google Scholar]
  14. Kalverda A. P., Wymenga S. S., Lommen A., van de Ven F. J., Hilbers C. W., Canters G. W. Solution structure of the type 1 blue copper protein amicyanin from Thiobacillus versutus. J Mol Biol. 1994 Jul 22;240(4):358–371. doi: 10.1006/jmbi.1994.1450. [DOI] [PubMed] [Google Scholar]
  15. Lyubarev A. E., Kurganov B. I., Burlakova A. A., Orlov V. N. Irreversible thermal denaturation of uridine phosphorylase from Escherichia coli K-12. Biophys Chem. 1998 Mar 9;70(3):247–257. doi: 10.1016/s0301-4622(97)00133-6. [DOI] [PubMed] [Google Scholar]
  16. Matsumura M., Becktel W. J., Levitt M., Matthews B. W. Stabilization of phage T4 lysozyme by engineered disulfide bonds. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6562–6566. doi: 10.1073/pnas.86.17.6562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mei G., Gilardi G., Venanzi M., Rosato N., Canters G. W., Agró A. F. Probing the structure and mobility of Pseudomonas aeruginosa azurin by circular dichroism and dynamic fluorescence anisotropy. Protein Sci. 1996 Nov;5(11):2248–2254. doi: 10.1002/pro.5560051111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Milardi D., La Rosa C., Grasso D. Extended theoretical analysis of irreversible protein thermal unfolding. Biophys Chem. 1994 Nov;52(3):183–189. doi: 10.1016/0301-4622(94)00033-g. [DOI] [PubMed] [Google Scholar]
  19. Milardi D., la Rosa C., Fasone S., Grasso D. An alternative approach in the structure-based predictions of the thermodynamics of protein unfolding. Biophys Chem. 1997 Nov;69(1):43–51. doi: 10.1016/s0301-4622(97)00071-9. [DOI] [PubMed] [Google Scholar]
  20. Murphy K. P., Gill S. J. Solid model compounds and the thermodynamics of protein unfolding. J Mol Biol. 1991 Dec 5;222(3):699–709. doi: 10.1016/0022-2836(91)90506-2. [DOI] [PubMed] [Google Scholar]
  21. Nar H., Messerschmidt A., Huber R., van de Kamp M., Canters G. W. X-ray crystal structure of the two site-specific mutants His35Gln and His35Leu of azurin from Pseudomonas aeruginosa. J Mol Biol. 1991 Mar 20;218(2):427–447. doi: 10.1016/0022-2836(91)90723-j. [DOI] [PubMed] [Google Scholar]
  22. Pace C. N., Grimsley G. R., Thomson J. A., Barnett B. J. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J Biol Chem. 1988 Aug 25;263(24):11820–11825. [PubMed] [Google Scholar]
  23. Petrich J. W., Longworth J. W., Fleming G. R. Internal motion and electron transfer in proteins: a picosecond fluorescence study of three homologous azurins. Biochemistry. 1987 May 19;26(10):2711–2722. doi: 10.1021/bi00384a010. [DOI] [PubMed] [Google Scholar]
  24. Picard V., Ersdal-Badju E., Lu A., Bock S. C. A rapid and efficient one-tube PCR-based mutagenesis technique using Pfu DNA polymerase. Nucleic Acids Res. 1994 Jul 11;22(13):2587–2591. doi: 10.1093/nar/22.13.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanchez-Ruiz J. M. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys J. 1992 Apr;61(4):921–935. doi: 10.1016/S0006-3495(92)81899-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schwarz H., Hinz H. J., Mehlich A., Tschesche H., Wenzel H. R. Stability studies on derivatives of the bovine pancreatic trypsin inhibitor. Biochemistry. 1987 Jun 16;26(12):3544–3551. doi: 10.1021/bi00386a044. [DOI] [PubMed] [Google Scholar]
  27. Strange R. W., Reinhammar B., Murphy L. M., Hasnain S. S. Structural and spectroscopic studies of the copper site of stellacyanin. Biochemistry. 1995 Jan 10;34(1):220–231. doi: 10.1021/bi00001a026. [DOI] [PubMed] [Google Scholar]
  28. Sánchez-Ruiz J. M., López-Lacomba J. L., Cortijo M., Mateo P. L. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry. 1988 Mar 8;27(5):1648–1652. doi: 10.1021/bi00405a039. [DOI] [PubMed] [Google Scholar]
  29. Taniyama Y., Yamamoto Y., Nakao M., Kikuchi M., Ikehara M. Role of disulfide bonds in folding and secretion of human lysozyme in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1988 May 16;152(3):962–967. doi: 10.1016/s0006-291x(88)80377-2. [DOI] [PubMed] [Google Scholar]
  30. Tello-Solis S. R., Hernandez-Arana A. Effect of irreversibility on the thermodynamic characterization of the thermal denaturation of Aspergillus saitoi acid proteinase. Biochem J. 1995 Nov 1;311(Pt 3):969–974. doi: 10.1042/bj3110969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vogl T., Brengelmann R., Hinz H. J., Scharf M., Lötzbeyer M., Engels J. W. Mechanism of protein stabilization by disulfide bridges: calorimetric unfolding studies on disulfide-deficient mutants of the alpha-amylase inhibitor tendamistat. J Mol Biol. 1995 Dec 1;254(3):481–496. doi: 10.1006/jmbi.1995.0632. [DOI] [PubMed] [Google Scholar]
  32. Wetzel R., Perry L. J., Baase W. A., Becktel W. J. Disulfide bonds and thermal stability in T4 lysozyme. Proc Natl Acad Sci U S A. 1988 Jan;85(2):401–405. doi: 10.1073/pnas.85.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. White F. H., Jr Studies on the relationship of disulfide bonds to the formation and maintenance of secondary structure in chicken egg white lysozyme. Biochemistry. 1982 Mar 2;21(5):967–977. doi: 10.1021/bi00534a023. [DOI] [PubMed] [Google Scholar]
  34. van de Kamp M., Hali F. C., Rosato N., Agro A. F., Canters G. W. Purification and characterization of a non-reconstitutable azurin, obtained by heterologous expression of the Pseudomonas aeruginosa azu gene in Escherichia coli. Biochim Biophys Acta. 1990 Sep 19;1019(3):283–292. doi: 10.1016/0005-2728(90)90206-j. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES