Abstract
The thermal stability of transferrin receptor isolated from human placenta in detergent-free solution has been investigated by static light-scattering and photon correlation spectroscopy. In detergent-free solution at 293.2 K, human transferrin receptor (hTfR) forms stable associates with a hydrodynamic radius of 16 nm. With increasing temperature the particles get more compact, above 340 K a phase transition takes, place and spontaneous aggregation of the receptor occurs. Under these conditions large clusters are formed that lead to fractal aggregates, coexisting with dendritic crystalline structures. The experimental findings are compatible with a model, which involves a reaction limited cluster-cluster aggregation mechanism in conjunction with a nucleation process. The molar enthalpy change associated with the phase transition was determined to be (1860 +/- 150) kJ/mol(-1) at a transition temperature of (341.3 +/- 0.2) K.
Full Text
The Full Text of this article is available as a PDF (237.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dill K. A., Shortle D. Denatured states of proteins. Annu Rev Biochem. 1991;60:795–825. doi: 10.1146/annurev.bi.60.070191.004051. [DOI] [PubMed] [Google Scholar]
- Enns C. A., Sussman H. H. Physical characterization of the transferrin receptor in human placentae. J Biol Chem. 1981 Oct 10;256(19):9820–9823. [PubMed] [Google Scholar]
- Fuchs H., Gessner R., Tauber R., Ghosh R. Functional reconstitution of the human placental transferrin receptor into phospholipid bilayers leads to long tubular structures proceeding from the vesicle surface. Biochemistry. 1995 May 9;34(18):6196–6207. doi: 10.1021/bi00018a024. [DOI] [PubMed] [Google Scholar]
- Fuchs H., Lücken U., Tauber R., Engel A., Gessner R. Structural model of phospholipid-reconstituted human transferrin receptor derived by electron microscopy. Structure. 1998 Oct 15;6(10):1235–1243. doi: 10.1016/s0969-2126(98)00124-5. [DOI] [PubMed] [Google Scholar]
- Hadden J. M., Bloemendal M., Haris P. I., van Stokkum I. H., Chapman D., Srai S. K. Structure and thermal stability of the extracellular fragment of human transferrin receptor at extracellular and endosomal pH. FEBS Lett. 1994 Aug 22;350(2-3):235–239. doi: 10.1016/0014-5793(94)00774-8. [DOI] [PubMed] [Google Scholar]
- Haltia T., Freire E. Forces and factors that contribute to the structural stability of membrane proteins. Biochim Biophys Acta. 1995 Feb 14;1228(1):1–27. doi: 10.1016/0005-2728(94)00161-w. [DOI] [PubMed] [Google Scholar]
- Hopkins C. R., Gibson A., Shipman M., Strickland D. K., Trowbridge I. S. In migrating fibroblasts, recycling receptors are concentrated in narrow tubules in the pericentriolar area, and then routed to the plasma membrane of the leading lamella. J Cell Biol. 1994 Jun;125(6):1265–1274. doi: 10.1083/jcb.125.6.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindsay HM, Klein R, Weitz DA, Lin MY, Meakin P. Effect of rotational diffusion on quasielastic light scattering from fractal colloid aggregates. Phys Rev A Gen Phys. 1988 Sep 1;38(5):2614–2626. doi: 10.1103/physreva.38.2614. [DOI] [PubMed] [Google Scholar]
- Lindsay HM, Klein R, Weitz DA, Lin MY, Meakin P. Structure and anisotropy of colloid aggregates. Phys Rev A Gen Phys. 1989 Mar 15;39(6):3112–3119. doi: 10.1103/physreva.39.3112. [DOI] [PubMed] [Google Scholar]
- Martin JE, Ackerson BJ. Static and dynamic scattering from fractals. Phys Rev A Gen Phys. 1985 Feb;31(2):1180–1182. doi: 10.1103/physreva.31.1180. [DOI] [PubMed] [Google Scholar]
- Martin JE, Leyvraz F. Quasielastic-scattering linewidths and relaxation times for surface and mass fractals. Phys Rev A Gen Phys. 1986 Sep;34(3):2346–2350. doi: 10.1103/physreva.34.2346. [DOI] [PubMed] [Google Scholar]
- McClelland A., Kühn L. C., Ruddle F. H. The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. Cell. 1984 Dec;39(2 Pt 1):267–274. doi: 10.1016/0092-8674(84)90004-7. [DOI] [PubMed] [Google Scholar]
- Orberger G., Geyer R., Stirm S., Tauber R. Structure of the N-linked oligosaccharides of the human transferrin receptor. Eur J Biochem. 1992 Apr 1;205(1):257–267. doi: 10.1111/j.1432-1033.1992.tb16776.x. [DOI] [PubMed] [Google Scholar]
- Pan B. T., Teng K., Wu C., Adam M., Johnstone R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985 Sep;101(3):942–948. doi: 10.1083/jcb.101.3.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shih Y. J., Baynes R. D., Hudson B. G., Flowers C. H., Skikne B. S., Cook J. D. Serum transferrin receptor is a truncated form of tissue receptor. J Biol Chem. 1990 Nov 5;265(31):19077–19081. [PubMed] [Google Scholar]
- Stowell M. H., Rees D. C. Structure and stability of membrane proteins. Adv Protein Chem. 1995;46:279–311. doi: 10.1016/s0065-3233(08)60338-1. [DOI] [PubMed] [Google Scholar]
- Turkewitz A. P., Amatruda J. F., Borhani D., Harrison S. C., Schwartz A. L. A high yield purification of the human transferrin receptor and properties of its major extracellular fragment. J Biol Chem. 1988 Jun 15;263(17):8318–8325. [PubMed] [Google Scholar]
- Turkewitz A. P., Schwartz A. L., Harrison S. C. A pH-dependent reversible conformational transition of the human transferrin receptor leads to self-association. J Biol Chem. 1988 Nov 5;263(31):16309–16315. [PubMed] [Google Scholar]
- Weitz DA, Lin MY. Dynamic scaling of cluster-mass distributions in kinetic colloid aggregation. Phys Rev Lett. 1986 Oct 20;57(16):2037–2040. doi: 10.1103/PhysRevLett.57.2037. [DOI] [PubMed] [Google Scholar]