Abstract
The temperature dependence of miniature endplate current (MEPC) amplitude (A(c)), 20-80% rise time (t(r)), and 90-33% fall-time (t(f)) was determined for lizard (Anolis carolinensis) intercostal muscle using broadband extracellular (EC) and voltage clamp (VC) recordings. Voltage clamp methods were optimized for the fast MEPC rising phase using custom electronics. From 0-43 degrees C, A(c) increased by approximately 4.2-fold, while t(r) and t(f) decreased by approximately 3.6- and approximately 9.5-fold, respectively. Arrhenius plots were smoothly curved, with small apparent Q(10) (A(c)) or (Q(10))(-1) (t(r) and t(f)) values mostly well below 2.0. Nearly identical extracellular and voltage clamp results ruled out measurement artifacts, even for the shortest t(r) values (<60 microseconds). Monte Carlo simulation of MEPCs showed that a single underlying rate cannot determine the observed temperature dependence. To quantitatively reproduce the experimental t(f) results, a minimal model required activation energies of 46.0 (Q(10) approximately 2.0) and 63.6 (Q(10) approximately 2.5) kJ mol(-1) for channel opening and closing, respectively, and accounted for most of the observed changes in A(c) and t(r) as well. Thus, relatively large but offsetting temperature sensitivities of channel gating mostly govern and minimize the temperature dependence of MEPCs, preserving the safety factor for neuromuscular transmission. Additional temperature-sensitive parameters that could fine-tune the minimal model are discussed.
Full Text
The Full Text of this article is available as a PDF (178.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams B. A. Temperature and synaptic efficacy in frog skeletal muscle. J Physiol. 1989 Jan;408:443–455. doi: 10.1113/jphysiol.1989.sp017469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson C. R., Stevens C. F. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol. 1973 Dec;235(3):655–691. doi: 10.1113/jphysiol.1973.sp010410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anglister L., Stiles J. R., Salpeter M. M. Acetylcholinesterase density and turnover number at frog neuromuscular junctions, with modeling of their role in synaptic function. Neuron. 1994 Apr;12(4):783–794. doi: 10.1016/0896-6273(94)90331-x. [DOI] [PubMed] [Google Scholar]
- Bartol T. M., Jr, Land B. R., Salpeter E. E., Salpeter M. M. Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J. 1991 Jun;59(6):1290–1307. doi: 10.1016/S0006-3495(91)82344-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colquhoun D., Sakmann B. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J Physiol. 1985 Dec;369:501–557. doi: 10.1113/jphysiol.1985.sp015912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dilger J. P., Brett R. S., Poppers D. M., Liu Y. The temperature dependence of some kinetic and conductance properties of acetylcholine receptor channels. Biochim Biophys Acta. 1991 Apr 2;1063(2):253–258. doi: 10.1016/0005-2736(91)90379-m. [DOI] [PubMed] [Google Scholar]
- Dionne V. E., Parsons R. L. Characteristics of the acetylcholine-operated channel at twitch and slow fibre neuromuscular junctions of the garter snake. J Physiol. 1981 Jan;310:145–158. doi: 10.1113/jphysiol.1981.sp013541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dwyer T. M. The rising phase of the miniature endplate current at the frog neuromuscular junction. Biochim Biophys Acta. 1981 Aug 6;646(1):51–60. doi: 10.1016/0005-2736(81)90271-6. [DOI] [PubMed] [Google Scholar]
- Fischbach G. D., Lass Y. A transition temperature for acetylcholine channel conductance in chick myoballs. J Physiol. 1978 Jul;280:527–536. doi: 10.1113/jphysiol.1978.sp012399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gage P. W., McBurney R. N. Effects of membrane potential, temperature and neostigmine on the conductance change caused by a quantum or acetylcholine at the toad neuromuscular junction. J Physiol. 1975 Jan;244(2):385–407. doi: 10.1113/jphysiol.1975.sp010805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harper A. A., Shelton J. R., Watt P. W. The temperature dependence of the time course of growth and decay of miniature end-plate currents in carp extraocular muscle following thermal acclimation. J Exp Biol. 1989 Nov;147:237–248. doi: 10.1242/jeb.147.1.237. [DOI] [PubMed] [Google Scholar]
- Head S. D. Temperature and end-plate currents in rat diaphragm. J Physiol. 1983 Jan;334:441–459. doi: 10.1113/jphysiol.1983.sp014505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann H. M., Dionne V. E. Temperature dependence of ion permeation at the endplate channel. J Gen Physiol. 1983 May;81(5):687–703. doi: 10.1085/jgp.81.5.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz B., Miledi R. The binding of acetylcholine to receptors and its removal from the synaptic cleft. J Physiol. 1973 Jun;231(3):549–574. doi: 10.1113/jphysiol.1973.sp010248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kordas M. An attempt at an analysis of the factors determining the time course of the end-plate current. II. Temperature. J Physiol. 1972 Jul;224(2):333–348. doi: 10.1113/jphysiol.1972.sp009898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lagerspetz A. THERMAL ACCLIMATION, NEUROMUSCULAR SYNAPTIC DELAY AND MINIATURE END-PLATE CURRENT DECAY IN THE FROG RANA TEMPORARIA. J Exp Biol. 1994 Feb;187(1):131–142. doi: 10.1242/jeb.187.1.131. [DOI] [PubMed] [Google Scholar]
- Land B. R., Harris W. V., Salpeter E. E., Salpeter M. M. Diffusion and binding constants for acetylcholine derived from the falling phase of miniature endplate currents. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1594–1598. doi: 10.1073/pnas.81.5.1594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Land B. R., Salpeter E. E., Salpeter M. M. Acetylcholine receptor site density affects the rising phase of miniature endplate currents. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3736–3740. doi: 10.1073/pnas.77.6.3736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Land B. R., Salpeter E. E., Salpeter M. M. Kinetic parameters for acetylcholine interaction in intact neuromuscular junction. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7200–7204. doi: 10.1073/pnas.78.11.7200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magleby K. L., Stevens C. F. A quantitative description of end-plate currents. J Physiol. 1972 May;223(1):173–197. doi: 10.1113/jphysiol.1972.sp009840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magleby K. L., Stevens C. F. The effect of voltage on the time course of end-plate currents. J Physiol. 1972 May;223(1):151–171. doi: 10.1113/jphysiol.1972.sp009839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews-Bellinger J., Salpeter M. M. Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications. J Physiol. 1978 Jun;279:197–213. doi: 10.1113/jphysiol.1978.sp012340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson B., Wann K. T. The effect of temperature on the growth and decay times of miniature end-plate currents in the mouse diaphragm. Brain Res. 1984 Mar 5;294(2):346–349. doi: 10.1016/0006-8993(84)91047-3. [DOI] [PubMed] [Google Scholar]
- Rosenberry T. L. Acetylcholinesterase. Adv Enzymol Relat Areas Mol Biol. 1975;43:103–218. doi: 10.1002/9780470122884.ch3. [DOI] [PubMed] [Google Scholar]
- Sachs F., Lecar H. Acetylcholine-induced current fluctuations in tissue-cultured muscle cells under voltage clamp. Biophys J. 1977 Feb;17(2):129–143. doi: 10.1016/S0006-3495(77)85631-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spruce A. E., Breckenridge L. J., Lee A. K., Almers W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron. 1990 May;4(5):643–654. doi: 10.1016/0896-6273(90)90192-i. [DOI] [PubMed] [Google Scholar]
- Stiles J. R., Van Helden D., Bartol T. M., Jr, Salpeter E. E., Salpeter M. M. Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5747–5752. doi: 10.1073/pnas.93.12.5747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanzi F., D'Angelo E. Miniature endplate current kinetics at the mouse neuromuscular junction: effects of temperature and medium viscosity. Eur J Neurosci. 1995 Sep 1;7(9):1926–1933. doi: 10.1111/j.1460-9568.1995.tb00715.x. [DOI] [PubMed] [Google Scholar]
- Van der Kloot W. The rise times of miniature endplate currents suggest that acetylcholine may be released over a period of time. Biophys J. 1995 Jul;69(1):148–154. doi: 10.1016/S0006-3495(95)79884-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zanello L. P., Aztiria E., Antollini S., Barrantes F. J. Nicotinic acetylcholine receptor channels are influenced by the physical state of their membrane environment. Biophys J. 1996 May;70(5):2155–2164. doi: 10.1016/S0006-3495(96)79781-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
