Abstract
Fixed charges on the extracellular surface of voltage-gated ion channels influence the gating. In previous studies of cloned voltage-gated K channels, we found evidence that the functional surface charges are located on the peptide loop between the fifth transmembrane segment and the pore region (the S5-P loop). In the present study, we determine the role of individual charges of the S5-P loop by correlating primary structure with experimentally calculated surface potentials of the previously investigated channels. The results suggest that contributions to the surface potential at the voltage sensor of the different residues varies in an oscillating pattern, with the first residue of the N-terminal end of the S5-P loop, an absolutely conserved glutamate, contributing most. An analysis yields estimates of the distance between the residues and the voltage sensor, the first N-terminal residue being located at a distance of 5-6 A. To explain the results, a structural hypothesis, comprising an alpha-helical N-terminal end of the S5-P loop, is presented.
Full Text
The Full Text of this article is available as a PDF (57.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. F., Rubinson K. A. Chemical modification of crab nerves can make them insensitive to the local anaesthetics tetrodotoxin and saxitoxin. Nature. 1975 Oct 2;257(5525):412–414. doi: 10.1038/257412a0. [DOI] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Durell S. R., Hao Y., Guy H. R. Structural models of the transmembrane region of voltage-gated and other K+ channels in open, closed, and inactivated conformations. J Struct Biol. 1998;121(2):263–284. doi: 10.1006/jsbi.1998.3962. [DOI] [PubMed] [Google Scholar]
- Elinder F., Arhem P. The functional surface charge density of a fast K channel in the myelinated axon of Xenopus laevis. J Membr Biol. 1998 Sep 15;165(2):175–181. doi: 10.1007/s002329900431. [DOI] [PubMed] [Google Scholar]
- Elinder F., Liu Y., Arhem P. Divalent cation effects on the Shaker K channel suggest a pentapeptide sequence as determinant of functional surface charge density. J Membr Biol. 1998 Sep 15;165(2):183–189. doi: 10.1007/s002329900432. [DOI] [PubMed] [Google Scholar]
- Elinder F., Madeja M., Arhem P. Surface Charges of K channels. Effects of strontium on five cloned channels expressed in Xenopus oocytes. J Gen Physiol. 1996 Oct;108(4):325–332. doi: 10.1085/jgp.108.4.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANKENHAEUSER B. Sodium permeability in toad nerve and in squid nerve. J Physiol. 1960 Jun;152:159–166. doi: 10.1113/jphysiol.1960.sp006477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRAHAME D. C. The electrical double layer and the theory of electrocapillarity. Chem Rev. 1947 Dec;41(3):441–501. doi: 10.1021/cr60130a002. [DOI] [PubMed] [Google Scholar]
- Gross A., MacKinnon R. Agitoxin footprinting the shaker potassium channel pore. Neuron. 1996 Feb;16(2):399–406. doi: 10.1016/s0896-6273(00)80057-4. [DOI] [PubMed] [Google Scholar]
- Grupe A., Schröter K. H., Ruppersberg J. P., Stocker M., Drewes T., Beckh S., Pongs O. Cloning and expression of a human voltage-gated potassium channel. A novel member of the RCK potassium channel family. EMBO J. 1990 Jun;9(6):1749–1756. doi: 10.1002/j.1460-2075.1990.tb08299.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krovetz H. S., VanDongen H. M., VanDongen A. M. Atomic distance estimates from disulfides and high-affinity metal-binding sites in a K+ channel pore. Biophys J. 1997 Jan;72(1):117–126. doi: 10.1016/S0006-3495(97)78651-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li M., Unwin N., Stauffer K. A., Jan Y. N., Jan L. Y. Images of purified Shaker potassium channels. Curr Biol. 1994 Feb 1;4(2):110–115. doi: 10.1016/s0960-9822(94)00026-6. [DOI] [PubMed] [Google Scholar]
- MacKinnon R., Heginbotham L., Abramson T. Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor. Neuron. 1990 Dec;5(6):767–771. doi: 10.1016/0896-6273(90)90335-d. [DOI] [PubMed] [Google Scholar]
- MacKinnon R., Miller C. Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor. Science. 1989 Sep 22;245(4924):1382–1385. doi: 10.1126/science.2476850. [DOI] [PubMed] [Google Scholar]
- Mathur R., Zheng J., Yan Y., Sigworth F. J. Role of the S3-S4 linker in Shaker potassium channel activation. J Gen Physiol. 1997 Feb;109(2):191–199. doi: 10.1085/jgp.109.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
- Nakamura H. Roles of electrostatic interaction in proteins. Q Rev Biophys. 1996 Feb;29(1):1–90. doi: 10.1017/s0033583500005746. [DOI] [PubMed] [Google Scholar]
- Peitzsch R. M., Eisenberg M., Sharp K. A., McLaughlin S. Calculations of the electrostatic potential adjacent to model phospholipid bilayers. Biophys J. 1995 Mar;68(3):729–738. doi: 10.1016/S0006-3495(95)80253-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigworth F. J., Spalding B. C. Chemical modification reduces the conductance of sodium channels in nerve. Nature. 1980 Jan 17;283(5744):293–295. doi: 10.1038/283293a0. [DOI] [PubMed] [Google Scholar]
- Stocker M., Miller C. Electrostatic distance geometry in a K+ channel vestibule. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9509–9513. doi: 10.1073/pnas.91.20.9509. [DOI] [PMC free article] [PubMed] [Google Scholar]