Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1363–1373. doi: 10.1016/S0006-3495(99)76985-7

1H-NMR and circular dichroism spectroscopic studies on changes in secondary structures of the sodium channel inactivation gate peptides as caused by the pentapeptide KIFMK.

Y Kuroda 1, Y Maeda 1, K Miyamoto 1, K Tanaka 1, K Kanaori 1, A Otaka 1, N Fujii 1, T Nakagawa 1
PMCID: PMC1300425  PMID: 10465748

Abstract

The pentapeptide KIFMK, which contains three clustered hydrophobic amino acid residues of isoleucine, phenylalanine, and methionine (IFM) in the sodium channel inactivation gate on the cytoplasmic linker between domains III and IV (III-IV linker), is known to restore fast inactivation to the mutant sodium channels having a defective inactivation gate or to accelerate the inactivation of the wild-type sodium channels. To investigate the docking site of KIFMK and to clarify the mechanisms for restoring the fast inactivation, we have studied the interactions between KIFMK and the fragment peptide in the III-IV linker GGQDIFMTEEQK (MP-1A; G1484-K1495 in rat brain IIA) by one- and two-dimensional (1)H-NMR and circular dichroism (CD) spectroscopies. KIFMK was found to increase the helical content of MP-1A in 80% trifluoroethanol (TFE) solution by approximately 11%. A pentapeptide, KIFMT, which can restore inactivation but less effectively than KIFMK, also increased the helical content of MP-1A, but to a lesser extent ( approximately 6%) than did KIFMK. In contrast, KDIFMTK, which is ineffective in restoring inactivation, decreased the helical content ( approximately -4%). Furthermore, we studied the interactions between KIFMK and modified peptides from MP-1A, that is, MP-1NA (D1487N), MP-1QEA (E1492Q), or MP-1EQA (E1493Q). The KIFMK was found to increase the helical content of MP-1EQA to an extent nearly identical to that of MP-1A, whereas it was found to decrease those of MP-1NA and MP-1QEA. These findings mean that KIFMK, by allowing each of the Lys residues to interact with D1487 and E1492, respectively, stabilized the helical structure of the III-IV linker around the IFM residues. This helix-stabilizing effect of KIFMK on the III-IV linker may restore and/or accelerate fast inactivation to the sodium channels having a defective inactivation gate or to wild-type sodium channels.

Full Text

The Full Text of this article is available as a PDF (165.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed C. M., Ware D. H., Lee S. C., Patten C. D., Ferrer-Montiel A. V., Schinder A. F., McPherson J. D., Wagner-McPherson C. B., Wasmuth J. J., Evans G. A. Primary structure, chromosomal localization, and functional expression of a voltage-gated sodium channel from human brain. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8220–8224. doi: 10.1073/pnas.89.17.8220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Catterall W. A. Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev. 1992 Oct;72(4 Suppl):S15–S48. doi: 10.1152/physrev.1992.72.suppl_4.S15. [DOI] [PubMed] [Google Scholar]
  3. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  4. Eaholtz G., Scheuer T., Catterall W. A. Restoration of inactivation and block of open sodium channels by an inactivation gate peptide. Neuron. 1994 May;12(5):1041–1048. doi: 10.1016/0896-6273(94)90312-3. [DOI] [PubMed] [Google Scholar]
  5. Eaholtz G., Zagotta W. N., Catterall W. A. Kinetic analysis of block of open sodium channels by a peptide containing the isoleucine, phenylalanine, and methionine (IFM) motif from the inactivation gate. J Gen Physiol. 1998 Jan;111(1):75–82. doi: 10.1085/jgp.111.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gellens M. E., George A. L., Jr, Chen L. Q., Chahine M., Horn R., Barchi R. L., Kallen R. G. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):554–558. doi: 10.1073/pnas.89.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. George A. L., Jr, Komisarof J., Kallen R. G., Barchi R. L. Primary structure of the adult human skeletal muscle voltage-dependent sodium channel. Ann Neurol. 1992 Feb;31(2):131–137. doi: 10.1002/ana.410310203. [DOI] [PubMed] [Google Scholar]
  8. Ghatpande A. S., Sikdar S. K. Competition for binding between veratridine and KIFMK: an open channel blocking peptide of the RIIA sodium channel. J Membr Biol. 1997 Dec 1;160(3):177–182. doi: 10.1007/s002329900306. [DOI] [PubMed] [Google Scholar]
  9. Groebke K., Renold P., Tsang K. Y., Allen T. J., McClure K. F., Kemp D. S. Template-nucleated alanine-lysine helices are stabilized by position-dependent interactions between the lysine side chain and the helix barrel. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4025–4029. doi: 10.1073/pnas.93.9.4025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Joseph D., Petsko G. A., Karplus M. Anatomy of a conformational change: hinged "lid" motion of the triosephosphate isomerase loop. Science. 1990 Sep 21;249(4975):1425–1428. doi: 10.1126/science.2402636. [DOI] [PubMed] [Google Scholar]
  11. Kellenberger S., West J. W., Catterall W. A., Scheuer T. Molecular analysis of potential hinge residues in the inactivation gate of brain type IIA Na+ channels. J Gen Physiol. 1997 May;109(5):607–617. doi: 10.1085/jgp.109.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kellenberger S., West J. W., Scheuer T., Catterall W. A. Molecular analysis of the putative inactivation particle in the inactivation gate of brain type IIA Na+ channels. J Gen Physiol. 1997 May;109(5):589–605. doi: 10.1085/jgp.109.5.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lawrence J. H., Orias D. W., Balser J. R., Nuss H. B., Tomaselli G. F., O'Rourke B., Marban E. Single-channel analysis of inactivation-defective rat skeletal muscle sodium channels containing the F1304Q mutation. Biophys J. 1996 Sep;71(3):1285–1294. doi: 10.1016/S0006-3495(96)79329-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lerche H., Peter W., Fleischhauer R., Pika-Hartlaub U., Malina T., Mitrovic N., Lehmann-Horn F. Role in fast inactivation of the IV/S4-S5 loop of the human muscle Na+ channel probed by cysteine mutagenesis. J Physiol. 1997 Dec 1;505(Pt 2):345–352. doi: 10.1111/j.1469-7793.1997.345bb.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marqusee S., Baldwin R. L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898–8902. doi: 10.1073/pnas.84.24.8898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McPhee J. C., Ragsdale D. S., Scheuer T., Catterall W. A. A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivation. J Biol Chem. 1998 Jan 9;273(2):1121–1129. doi: 10.1074/jbc.273.2.1121. [DOI] [PubMed] [Google Scholar]
  17. McPhee J. C., Ragsdale D. S., Scheuer T., Catterall W. A. A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation. J Biol Chem. 1995 May 19;270(20):12025–12034. doi: 10.1074/jbc.270.20.12025. [DOI] [PubMed] [Google Scholar]
  18. McPhee J. C., Ragsdale D. S., Scheuer T., Catterall W. A. A mutation in segment IVS6 disrupts fast inactivation of sodium channels. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12346–12350. doi: 10.1073/pnas.91.25.12346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Merutka G., Dyson H. J., Wright P. E. 'Random coil' 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. J Biomol NMR. 1995 Jan;5(1):14–24. doi: 10.1007/BF00227466. [DOI] [PubMed] [Google Scholar]
  20. Noda M., Ikeda T., Kayano T., Suzuki H., Takeshima H., Kurasaki M., Takahashi H., Numa S. Existence of distinct sodium channel messenger RNAs in rat brain. Nature. 1986 Mar 13;320(6058):188–192. doi: 10.1038/320188a0. [DOI] [PubMed] [Google Scholar]
  21. Patton D. E., West J. W., Catterall W. A., Goldin A. L. Amino acid residues required for fast Na(+)-channel inactivation: charge neutralizations and deletions in the III-IV linker. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10905–10909. doi: 10.1073/pnas.89.22.10905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith M. R., Goldin A. L. Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys J. 1997 Oct;73(4):1885–1895. doi: 10.1016/S0006-3495(97)78219-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tang L., Kallen R. G., Horn R. Role of an S4-S5 linker in sodium channel inactivation probed by mutagenesis and a peptide blocker. J Gen Physiol. 1996 Aug;108(2):89–104. doi: 10.1085/jgp.108.2.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vila J. A., Ripoll D. R., Villegas M. E., Vorobjev Y. N., Scheraga H. A. Role of hydrophobicity and solvent-mediated charge-charge interactions in stabilizing alpha-helices. Biophys J. 1998 Dec;75(6):2637–2646. doi: 10.1016/S0006-3495(98)77709-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. West J. W., Patton D. E., Scheuer T., Wang Y., Goldin A. L., Catterall W. A. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10910–10914. doi: 10.1073/pnas.89.22.10910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Williamson M. P., Asakura T., Nakamura E., Demura M. A method for the calculation of protein alpha-CH chemical shifts. J Biomol NMR. 1992 Jan;2(1):83–98. doi: 10.1007/BF02192802. [DOI] [PubMed] [Google Scholar]
  27. Wishart D. S., Sykes B. D. Chemical shifts as a tool for structure determination. Methods Enzymol. 1994;239:363–392. doi: 10.1016/s0076-6879(94)39014-2. [DOI] [PubMed] [Google Scholar]
  28. Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
  29. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  30. Wu C. S., Ikeda K., Yang J. T. Ordered conformation of polypeptides and proteins in acidic dodecyl sulfate solution. Biochemistry. 1981 Feb 3;20(3):566–570. doi: 10.1021/bi00506a019. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES