Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1394–1403. doi: 10.1016/S0006-3495(99)76988-2

Contribution of ryanodine receptor type 3 to Ca(2+) sparks in embryonic mouse skeletal muscle.

M W Conklin 1, V Barone 1, V Sorrentino 1, R Coronado 1
PMCID: PMC1300428  PMID: 10465751

Abstract

The kinetic behavior of Ca(2+) sparks in knockout mice lacking a specific ryanodine receptor (RyR) isoform should provide molecular information on function and assembly of clusters of RyRs. We examined resting Ca(2+) sparks in RyR type 3-null intercostal myotubes from embryonic day 18 (E18) mice and compared them to Ca(2+) sparks in wild-type (wt) mice of the same age and to Ca(2+) sparks in fast-twitch muscle cells from the foot of wt adult mice. Sparks from RyR type 3-null embryonic cells (368 events) were significantly smaller, briefer, and had a faster time to peak than sparks from wt cells (280 events) of the same age. Sparks in adult cells (220 events) were infrequent, yet they were highly reproducible with population means smaller than those in embryonic RyR type 3-null cells but similar to those reported in adult amphibian skeletal muscle fibers. Three-dimensional representations of the spark peak intensity (DeltaF/Fo) vs. full width at half-maximal intensity (FWHM) vs. full duration at half-maximal intensity (FTHM) showed that wt embryonic sparks were considerably more variable in size and kinetics than sparks in adult muscle. In all cases, tetracaine (0.2 mM) abolished Ca(2+) spark activity, whereas caffeine (0.1 mM) lengthened the spark duration in wt embryonic and adult cells but not in RyR type 3-null cells. These results confirmed that sparks arose from RyRs. The low caffeine sensitivity of RyR type 3-null cells is entirely consistent with observations by other investigators. There are three conclusions from this study: i) RyR type-1 engages in Ca(2+) spark activity in the absence of other RyR isoforms in RyR type 3-null myotubes; ii) Ca(2+) sparks with parameters similar to those reported in adult amphibian skeletal muscle can be detected, albeit at a low frequency, in adult mammalian skeletal muscle cells; and iii) a major contributor to the unusually large Ca(2+) sparks observed in normal (wt) embryonic muscle is RyR type 3. To explain the reduction in the size of sparks in adult compared to embryonic skeletal muscle, we suggest that in embryonic muscle, RyR type 1 and RyR type 3 channels co-contribute to Ca(2+) release during the same spark and that Ca(2+) sparks undergo a maturation process which involves a decrease in RyR type 3.

Full Text

The Full Text of this article is available as a PDF (706.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barone V., Bertocchini F., Bottinelli R., Protasi F., Allen P. D., Franzini Armstrong C., Reggiani C., Sorrentino V. Contractile impairment and structural alterations of skeletal muscles from knockout mice lacking type 1 and type 3 ryanodine receptors. FEBS Lett. 1998 Jan 30;422(2):160–164. doi: 10.1016/s0014-5793(98)00003-9. [DOI] [PubMed] [Google Scholar]
  2. Bertocchini F., Ovitt C. E., Conti A., Barone V., Schöler H. R., Bottinelli R., Reggiani C., Sorrentino V. Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles. EMBO J. 1997 Dec 1;16(23):6956–6963. doi: 10.1093/emboj/16.23.6956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Block B. A., Imagawa T., Campbell K. P., Franzini-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988 Dec;107(6 Pt 2):2587–2600. doi: 10.1083/jcb.107.6.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen S. R., Li X., Ebisawa K., Zhang L. Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J Biol Chem. 1997 Sep 26;272(39):24234–24246. doi: 10.1074/jbc.272.39.24234. [DOI] [PubMed] [Google Scholar]
  5. Cheng H., Lederer W. J., Cannell M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993 Oct 29;262(5134):740–744. doi: 10.1126/science.8235594. [DOI] [PubMed] [Google Scholar]
  6. Conklin M. W., Powers P., Gregg R. G., Coronado R. Ca2+ sparks in embryonic mouse skeletal muscle selectively deficient in dihydropyridine receptor alpha1S or beta1a subunits. Biophys J. 1999 Feb;76(2):657–669. doi: 10.1016/S0006-3495(99)77233-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conti A., Gorza L., Sorrentino V. Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles. Biochem J. 1996 May 15;316(Pt 1):19–23. doi: 10.1042/bj3160019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Csernoch L., Bernengo J. C., Szentesi P., Jacquemond V. Measurements of intracellular Mg2+ concentration in mouse skeletal muscle fibers with the fluorescent indicator mag-indo-1. Biophys J. 1998 Aug;75(2):957–967. doi: 10.1016/S0006-3495(98)77584-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferrari M. B., Ribbeck K., Hagler D. J., Spitzer N. C. A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes. J Cell Biol. 1998 Jun 15;141(6):1349–1356. doi: 10.1083/jcb.141.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Franzini-Armstrong C. Simultaneous maturation of transverse tubules and sarcoplasmic reticulum during muscle differentiation in the mouse. Dev Biol. 1991 Aug;146(2):353–363. doi: 10.1016/0012-1606(91)90237-w. [DOI] [PubMed] [Google Scholar]
  11. Giannini G., Conti A., Mammarella S., Scrobogna M., Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995 Mar;128(5):893–904. doi: 10.1083/jcb.128.5.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gu X., Spitzer N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature. 1995 Jun 29;375(6534):784–787. doi: 10.1038/375784a0. [DOI] [PubMed] [Google Scholar]
  13. Györke S., Vélez P., Suárez-Isla B., Fill M. Activation of single cardiac and skeletal ryanodine receptor channels by flash photolysis of caged Ca2+. Biophys J. 1994 Jun;66(6):1879–1886. doi: 10.1016/S0006-3495(94)80981-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hakamata Y., Nakai J., Takeshima H., Imoto K. Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett. 1992 Nov 9;312(2-3):229–235. doi: 10.1016/0014-5793(92)80941-9. [DOI] [PubMed] [Google Scholar]
  15. Jacquemond V. Indo-1 fluorescence signals elicited by membrane depolarization in enzymatically isolated mouse skeletal muscle fibers. Biophys J. 1997 Aug;73(2):920–928. doi: 10.1016/S0006-3495(97)78124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jeyakumar L. H., Copello J. A., O'Malley A. M., Wu G. M., Grassucci R., Wagenknecht T., Fleischer S. Purification and characterization of ryanodine receptor 3 from mammalian tissue. J Biol Chem. 1998 Jun 26;273(26):16011–16020. doi: 10.1074/jbc.273.26.16011. [DOI] [PubMed] [Google Scholar]
  17. Klein M. G., Cheng H., Santana L. F., Jiang Y. H., Lederer W. J., Schneider M. F. Two mechanisms of quantized calcium release in skeletal muscle. Nature. 1996 Feb 1;379(6564):455–458. doi: 10.1038/379455a0. [DOI] [PubMed] [Google Scholar]
  18. Koizumi S., Bootman M. D., Bobanović L. K., Schell M. J., Berridge M. J., Lipp P. Characterization of elementary Ca2+ release signals in NGF-differentiated PC12 cells and hippocampal neurons. Neuron. 1999 Jan;22(1):125–137. doi: 10.1016/s0896-6273(00)80684-4. [DOI] [PubMed] [Google Scholar]
  19. Lacampagne A., Lederer W. J., Schneider M. F., Klein M. G. Repriming and activation alter the frequency of stereotyped discrete Ca2+ release events in frog skeletal muscle. J Physiol. 1996 Dec 15;497(Pt 3):581–588. doi: 10.1113/jphysiol.1996.sp021791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murayama T., Ogawa Y. Characterization of type 3 ryanodine receptor (RyR3) of sarcoplasmic reticulum from rabbit skeletal muscles. J Biol Chem. 1997 Sep 19;272(38):24030–24037. doi: 10.1074/jbc.272.38.24030. [DOI] [PubMed] [Google Scholar]
  21. Ottini L., Marziali G., Conti A., Charlesworth A., Sorrentino V. Alpha and beta isoforms of ryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3. Biochem J. 1996 Apr 1;315(Pt 1):207–216. doi: 10.1042/bj3150207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oyamada H., Murayama T., Takagi T., Iino M., Iwabe N., Miyata T., Ogawa Y., Endo M. Primary structure and distribution of ryanodine-binding protein isoforms of the bullfrog skeletal muscle. J Biol Chem. 1994 Jun 24;269(25):17206–17214. [PubMed] [Google Scholar]
  23. Parker I., Zang W. J., Wier W. G. Ca2+ sparks involving multiple Ca2+ release sites along Z-lines in rat heart cells. J Physiol. 1996 Nov 15;497(Pt 1):31–38. doi: 10.1113/jphysiol.1996.sp021747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Percival A. L., Williams A. J., Kenyon J. L., Grinsell M. M., Airey J. A., Sutko J. L. Chicken skeletal muscle ryanodine receptor isoforms: ion channel properties. Biophys J. 1994 Nov;67(5):1834–1850. doi: 10.1016/S0006-3495(94)80665-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rosemblatt M., Hidalgo C., Vergara C., Ikemoto N. Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle. J Biol Chem. 1981 Aug 10;256(15):8140–8148. [PubMed] [Google Scholar]
  26. Shacklock P. S., Wier W. G., Balke C. W. Local Ca2+ transients (Ca2+ sparks) originate at transverse tubules in rat heart cells. J Physiol. 1995 Sep 15;487(Pt 3):601–608. doi: 10.1113/jphysiol.1995.sp020903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shirokova N., García J., Ríos E. Local calcium release in mammalian skeletal muscle. J Physiol. 1998 Oct 15;512(Pt 2):377–384. doi: 10.1111/j.1469-7793.1998.377be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shirokova N., Ríos E. Small event Ca2+ release: a probable precursor of Ca2+ sparks in frog skeletal muscle. J Physiol. 1997 Jul 1;502(Pt 1):3–11. doi: 10.1111/j.1469-7793.1997.003bl.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sonnleitner A., Conti A., Bertocchini F., Schindler H., Sorrentino V. Functional properties of the ryanodine receptor type 3 (RyR3) Ca2+ release channel. EMBO J. 1998 May 15;17(10):2790–2798. doi: 10.1093/emboj/17.10.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Strube C., Beurg M., Powers P. A., Gregg R. G., Coronado R. Reduced Ca2+ current, charge movement, and absence of Ca2+ transients in skeletal muscle deficient in dihydropyridine receptor beta 1 subunit. Biophys J. 1996 Nov;71(5):2531–2543. doi: 10.1016/S0006-3495(96)79446-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sutko J. L., Airey J. A. Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev. 1996 Oct;76(4):1027–1071. doi: 10.1152/physrev.1996.76.4.1027. [DOI] [PubMed] [Google Scholar]
  32. Takeshima H., Iino M., Takekura H., Nishi M., Kuno J., Minowa O., Takano H., Noda T. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature. 1994 Jun 16;369(6481):556–559. doi: 10.1038/369556a0. [DOI] [PubMed] [Google Scholar]
  33. Takeshima H., Ikemoto T., Nishi M., Nishiyama N., Shimuta M., Sugitani Y., Kuno J., Saito I., Saito H., Endo M. Generation and characterization of mutant mice lacking ryanodine receptor type 3. J Biol Chem. 1996 Aug 16;271(33):19649–19652. doi: 10.1074/jbc.271.33.19649. [DOI] [PubMed] [Google Scholar]
  34. Takeshima H., Yamazawa T., Ikemoto T., Takekura H., Nishi M., Noda T., Iino M. Ca(2+)-induced Ca2+ release in myocytes from dyspedic mice lacking the type-1 ryanodine receptor. EMBO J. 1995 Jul 3;14(13):2999–3006. doi: 10.1002/j.1460-2075.1995.tb07302.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tsugorka A., Ríos E., Blatter L. A. Imaging elementary events of calcium release in skeletal muscle cells. Science. 1995 Sep 22;269(5231):1723–1726. doi: 10.1126/science.7569901. [DOI] [PubMed] [Google Scholar]
  36. Yamazawa T., Takeshima H., Shimuta M., Iino M. A region of the ryanodine receptor critical for excitation-contraction coupling in skeletal muscle. J Biol Chem. 1997 Mar 28;272(13):8161–8164. doi: 10.1074/jbc.272.13.8161. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES