Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1445–1457. doi: 10.1016/S0006-3495(99)76992-4

Polymer-cushioned bilayers. I. A structural study of various preparation methods using neutron reflectometry.

J Y Wong 1, J Majewski 1, M Seitz 1, C K Park 1, J N Israelachvili 1, G S Smith 1
PMCID: PMC1300432  PMID: 10465755

Abstract

This neutron reflectometry study evaluates the structures resulting from different methods of preparing polymer-cushioned lipid bilayers. Four different techniques to deposit a dimyristoylphosphatidylcholine (DMPC) bilayer onto a polyethylenimine (PEI)-coated quartz substrate were examined: 1) vesicle adsorption onto a previously dried polymer layer; 2) vesicle adsorption onto a bare substrate, followed by polymer adsorption; and 3, 4) Langmuir-Blodgett vertical deposition of a lipid monolayer spread over a polymer-containing subphase to form a polymer-supported lipid monolayer, followed by formation of the outer lipid monolayer by either 3) horizontal deposition of the lipid monolayer or 4) vesicle adsorption. We show that the initial conditions of the polymer layer are a critical factor for the successful formation of our desired structure, i.e., a continuous bilayer atop a hydrated PEI layer. Our desired structure was found for all methods investigated except the horizontal deposition. The interaction forces between these polymer-supported bilayers are investigated in a separate paper (Wong, J. Y., C. K. Park, M. Seitz, and J. Israelachvili. 1999. Biophys. J. 77:1458-1468), which indicate that the presence of the polymer cushion significantly alters the interaction potential. These polymer-supported bilayers could serve as model systems for the study of transmembrane proteins under conditions more closely mimicking real cellular membrane environments.

Full Text

The Full Text of this article is available as a PDF (256.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayerl T. M., Bloom M. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance. Biophys J. 1990 Aug;58(2):357–362. doi: 10.1016/S0006-3495(90)82382-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hinterdorfer P., Baber G., Tamm L. K. Reconstitution of membrane fusion sites. A total internal reflection fluorescence microscopy study of influenza hemagglutinin-mediated membrane fusion. J Biol Chem. 1994 Aug 12;269(32):20360–20368. [PubMed] [Google Scholar]
  3. Jacobson K., Sheets E. D., Simson R. Revisiting the fluid mosaic model of membranes. Science. 1995 Jun 9;268(5216):1441–1442. doi: 10.1126/science.7770769. [DOI] [PubMed] [Google Scholar]
  4. Janiak M. J., Small D. M., Shipley G. G. Nature of the Thermal pretransition of synthetic phospholipids: dimyristolyl- and dipalmitoyllecithin. Biochemistry. 1976 Oct 19;15(21):4575–4580. doi: 10.1021/bi00666a005. [DOI] [PubMed] [Google Scholar]
  5. Johnson S. J., Bayerl T. M., McDermott D. C., Adam G. W., Rennie A. R., Thomas R. K., Sackmann E. Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J. 1991 Feb;59(2):289–294. doi: 10.1016/S0006-3495(91)82222-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kalb E., Frey S., Tamm L. K. Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim Biophys Acta. 1992 Jan 31;1103(2):307–316. doi: 10.1016/0005-2736(92)90101-q. [DOI] [PubMed] [Google Scholar]
  7. Kuhl T. L., Majewski J., Wong J. Y., Steinberg S., Leckband D. E., Israelachvili J. N., Smith G. S. A neutron reflectivity study of polymer-modified phospholipid monolayers at the solid-solution interface: polyethylene glycol-lipids on silane-modified substrates. Biophys J. 1998 Nov;75(5):2352–2362. doi: 10.1016/S0006-3495(98)77679-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kühner M., Tampé R., Sackmann E. Lipid mono- and bilayer supported on polymer films: composite polymer-lipid films on solid substrates. Biophys J. 1994 Jul;67(1):217–226. doi: 10.1016/S0006-3495(94)80472-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Majewski J., Wong J. Y., Park C. K., Seitz M., Israelachvili J. N., Smith G. S. Structural studies of polymer-cushioned lipid bilayers. Biophys J. 1998 Nov;75(5):2363–2367. doi: 10.1016/S0006-3495(98)77680-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McConnell H. M., Watts T. H., Weis R. M., Brian A. A. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta. 1986 Jun 12;864(1):95–106. doi: 10.1016/0304-4157(86)90016-x. [DOI] [PubMed] [Google Scholar]
  11. Puu G., Gustafson I. Planar lipid bilayers on solid supports from liposomes--factors of importance for kinetics and stability. Biochim Biophys Acta. 1997 Jul 25;1327(2):149–161. doi: 10.1016/s0005-2736(97)00052-7. [DOI] [PubMed] [Google Scholar]
  12. Sackmann E. Supported membranes: scientific and practical applications. Science. 1996 Jan 5;271(5245):43–48. doi: 10.1126/science.271.5245.43. [DOI] [PubMed] [Google Scholar]
  13. Salafsky J., Groves J. T., Boxer S. G. Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry. 1996 Nov 26;35(47):14773–14781. doi: 10.1021/bi961432i. [DOI] [PubMed] [Google Scholar]
  14. Spinke J., Yang J., Wolf H., Liley M., Ringsdorf H., Knoll W. Polymer-supported bilayer on a solid substrate. Biophys J. 1992 Dec;63(6):1667–1671. doi: 10.1016/S0006-3495(92)81742-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Steinem C., Janshoff A., Ulrich W. P., Sieber M., Galla H. J. Impedance analysis of supported lipid bilayer membranes: a scrutiny of different preparation techniques. Biochim Biophys Acta. 1996 Mar 13;1279(2):169–180. doi: 10.1016/0005-2736(95)00274-x. [DOI] [PubMed] [Google Scholar]
  16. Tamm L. K., McConnell H. M. Supported phospholipid bilayers. Biophys J. 1985 Jan;47(1):105–113. doi: 10.1016/S0006-3495(85)83882-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wong J. Y., Park C. K., Seitz M., Israelachvili J. Polymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus. Biophys J. 1999 Sep;77(3):1458–1468. doi: 10.1016/S0006-3495(99)76993-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES