Abstract
We studied the effects of natural ceramide and a series of ceramide analogs with different acyl chain lengths on the activity of rat brain protein kinase C (PKC) and on the structure of bovine liver phosphatidylcholine (BLPC)/dipalmitoylphosphatidylcholine (DPPC)/dipalmitoylphosphatidylserine (DPPS) (3:1:1 molar ratio) bilayers using (2)H-NMR and specific enzymatic assays in the absence or presence of 7.5 mol % diolein (DO). Only a slight activation of PKC was observed upon addition of the short-chain ceramide analogs (C(2)-, C(6)-, or C(8)-ceramide); natural ceramide or C(16)-ceramide had no effect. In the presence of 7.5 mol % DO, natural ceramide and C(16)-ceramide analog slightly attenuated DO-enhanced PKC activity. (2)H-NMR results demonstrated that natural ceramide and C(16)-ceramide induced lateral phase separation of gel-like and liquid crystalline domains in the bilayers; however, this type of membrane perturbation has no direct effect on PKC activity. The addition of both short-chain ceramide analogs and DO had a synergistic effect in activating PKC, with maximum activity observed with 20 mol % C(6)-ceramide and 15 mol % DO. Further increases in C(6)-ceramide and/or DO concentrations led to decreased PKC activity. A detailed (2)H-NMR investigation of the combined effects of C(6)-ceramide and DO on lipid bilayer structure showed a synergistic effect of these two reagents to increase membrane tendency to adopt nonbilayer structures, resulting in the actual presence of such structures in samples exceeding 20 mol % ceramide and 15 mol % DO. Thus, the increased tendency to form nonbilayer lipid phases correlates with increased PKC activity, whereas the actual presence of such phases reduced the activity of the enzyme. Moreover, the results show that short-chain ceramide analogs, widely used to study cellular effects of ceramide, have biological effects that are not exhibited by natural ceramide.
Full Text
The Full Text of this article is available as a PDF (124.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abousalham A., Liossis C., O'Brien L., Brindley D. N. Cell-permeable ceramides prevent the activation of phospholipase D by ADP-ribosylation factor and RhoA. J Biol Chem. 1997 Jan 10;272(2):1069–1075. doi: 10.1074/jbc.272.2.1069. [DOI] [PubMed] [Google Scholar]
- Aihara H., Asaoka Y., Yoshida K., Nishizuka Y. Sustained activation of protein kinase C is essential to HL-60 cell differentiation to macrophage. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11062–11066. doi: 10.1073/pnas.88.24.11062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altin J. G., Bradshaw R. A. Production of 1,2-diacylglycerol in PC12 cells by nerve growth factor and basic fibroblast growth factor. J Neurochem. 1990 May;54(5):1666–1676. doi: 10.1111/j.1471-4159.1990.tb01220.x. [DOI] [PubMed] [Google Scholar]
- Augé N., Andrieu N., Nègre-Salvayre A., Thiers J. C., Levade T., Salvayre R. The sphingomyelin-ceramide signaling pathway is involved in oxidized low density lipoprotein-induced cell proliferation. J Biol Chem. 1996 Aug 9;271(32):19251–19255. doi: 10.1074/jbc.271.32.19251. [DOI] [PubMed] [Google Scholar]
- Bell R. M., Burns D. J. Lipid activation of protein kinase C. J Biol Chem. 1991 Mar 15;266(8):4661–4664. [PubMed] [Google Scholar]
- Bishop W. R., Bell R. M. Functions of diacylglycerol in glycerolipid metabolism, signal transduction and cellular transformation. Oncogene Res. 1988 Feb;2(3):205–218. [PubMed] [Google Scholar]
- Bolen E. J., Sando J. J. Effect of phospholipid unsaturation on protein kinase C activation. Biochemistry. 1992 Jun 30;31(25):5945–5951. doi: 10.1021/bi00140a034. [DOI] [PubMed] [Google Scholar]
- Buchner K. Protein kinase C in the transduction of signals toward and within the cell nucleus. Eur J Biochem. 1995 Mar 1;228(2):211–221. [PubMed] [Google Scholar]
- Carroll M. P., May W. S. Protein kinase C-mediated serine phosphorylation directly activates Raf-1 in murine hematopoietic cells. J Biol Chem. 1994 Jan 14;269(2):1249–1256. [PubMed] [Google Scholar]
- Chmura S. J., Nodzenski E., Crane M. A., Virudachalam S., Hallahan D. E., Weichselbaum R. R., Quintans J. Cross-talk between ceramide and PKC activity in the control of apoptosis in WEHI-231. Adv Exp Med Biol. 1996;406:39–55. doi: 10.1007/978-1-4899-0274-0_5. [DOI] [PubMed] [Google Scholar]
- Das S., Rand R. P. Modification by diacylglycerol of the structure and interaction of various phospholipid bilayer membranes. Biochemistry. 1986 May 20;25(10):2882–2889. doi: 10.1021/bi00358a022. [DOI] [PubMed] [Google Scholar]
- Davis D. G., Inesi G., Gulik-Krzywicki T. Lipid molecular motion and enzyme activity in sarcoplasmic reticulum membrane. Biochemistry. 1976 Mar 23;15(6):1271–1276. doi: 10.1021/bi00651a016. [DOI] [PubMed] [Google Scholar]
- Davis J. H. Deuterium magnetic resonance study of the gel and liquid crystalline phases of dipalmitoyl phosphatidylcholine. Biophys J. 1979 Sep;27(3):339–358. doi: 10.1016/S0006-3495(79)85222-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Boeck H., Zidovetzki R. Effects of diacylglycerols on the structure of phosphatidylcholine bilayers: a 2H and 31P NMR study. Biochemistry. 1989 Sep 5;28(18):7439–7446. doi: 10.1021/bi00444a043. [DOI] [PubMed] [Google Scholar]
- De Boeck H., Zidovetzki R. Interactions of saturated diacylglycerols with phosphatidylcholine bilayers: A 2H NMR study. Biochemistry. 1992 Jan 21;31(2):623–630. doi: 10.1021/bi00117a046. [DOI] [PubMed] [Google Scholar]
- Dekker L. V., Parker P. J. Protein kinase C--a question of specificity. Trends Biochem Sci. 1994 Feb;19(2):73–77. doi: 10.1016/0968-0004(94)90038-8. [DOI] [PubMed] [Google Scholar]
- Dibble A. R., Hinderliter A. K., Sando J. J., Biltonen R. L. Lipid lateral heterogeneity in phosphatidylcholine/phosphatidylserine/diacylglycerol vesicles and its influence on protein kinase C activation. Biophys J. 1996 Oct;71(4):1877–1890. doi: 10.1016/S0006-3495(96)79387-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epand R. M., Bottega R. Determination of the phase behaviour of phosphatidylethanolamine admixed with other lipids and the effects of calcium chloride: implications for protein kinase C regulation. Biochim Biophys Acta. 1988 Oct 6;944(2):144–154. doi: 10.1016/0005-2736(88)90427-0. [DOI] [PubMed] [Google Scholar]
- Epand R. M. Diacylglycerols, lysolecithin, or hydrocarbons markedly alter the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines. Biochemistry. 1985 Dec 3;24(25):7092–7095. doi: 10.1021/bi00346a011. [DOI] [PubMed] [Google Scholar]
- Epand R. M., Epand R. F., Lancaster C. R. Modulation of the bilayer to hexagonal phase transition of phosphatidylethanolamines by acylglycerols. Biochim Biophys Acta. 1988 Nov 22;945(2):161–166. doi: 10.1016/0005-2736(88)90478-6. [DOI] [PubMed] [Google Scholar]
- Epand R. M., Lester D. S. The role of membrane biophysical properties in the regulation of protein kinase C activity. Trends Pharmacol Sci. 1990 Aug;11(8):317–320. doi: 10.1016/0165-6147(90)90234-y. [DOI] [PubMed] [Google Scholar]
- Giorgione J., Epand R. M., Buda C., Farkas T. Role of phospholipids containing docosahexaenoyl chains in modulating the activity of protein kinase C. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9767–9770. doi: 10.1073/pnas.92.21.9767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg E. M., Lester D. S., Borchardt D. B., Zidovetzki R. Effects of diacylglycerols and Ca2+ on structure of phosphatidylcholine/phosphatidylserine bilayers. Biophys J. 1994 Feb;66(2 Pt 1):382–393. doi: 10.1016/s0006-3495(94)80788-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg E. M., Lester D. S., Borchardt D. B., Zidovetzki R. Effects of diacylglycerols on conformation of phosphatidylcholine headgroups in phosphatidylcholine/phosphatidylserine bilayers. Biophys J. 1995 Sep;69(3):965–973. doi: 10.1016/S0006-3495(95)79970-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg E. M., Zidovetzki R. Effects of dipalmitoylglycerol and fatty acids on membrane structure and protein kinase C activity. Biophys J. 1997 Nov;73(5):2603–2614. doi: 10.1016/S0006-3495(97)78290-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg E. M., Zidovetzki R. Synergistic effects of diacylglycerols and fatty acids on membrane structure and protein kinase C activity. Biochemistry. 1998 Apr 21;37(16):5623–5632. doi: 10.1021/bi9719354. [DOI] [PubMed] [Google Scholar]
- Grant S., Jarvis W. D., Swerdlow P. S., Turner A. J., Traylor R. S., Wallace H. J., Lin P. S., Pettit G. R., Gewirtz D. A. Potentiation of the activity of 1-beta-D-arabinofuranosylcytosine by the protein kinase C activator bryostatin 1 in HL-60 cells: association with enhanced fragmentation of mature DNA. Cancer Res. 1992 Nov 15;52(22):6270–6278. [PubMed] [Google Scholar]
- Hannun Y. A., Bell R. M. Phorbol ester binding and activation of protein kinase C on triton X-100 mixed micelles containing phosphatidylserine. J Biol Chem. 1986 Jul 15;261(20):9341–9347. [PubMed] [Google Scholar]
- Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
- Hannun Y. A., Loomis C. R., Merrill A. H., Jr, Bell R. M. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem. 1986 Sep 25;261(27):12604–12609. [PubMed] [Google Scholar]
- Hardy S. J., Ferrante A., Robinson B. S., Johnson D. W., Poulos A., Clark K. J., Murray A. W. In vitro activation of rat brain protein kinase C by polyenoic very-long-chain fatty acids. J Neurochem. 1994 Apr;62(4):1546–1551. doi: 10.1046/j.1471-4159.1994.62041546.x. [DOI] [PubMed] [Google Scholar]
- Heimburg T., Würz U., Marsh D. Binary phase diagram of hydrated dimyristoylglycerol-dimyristoylphosphatidylcholine mixtures. Biophys J. 1992 Nov;63(5):1369–1378. doi: 10.1016/S0006-3495(92)81714-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinderliter A. K., Dibble A. R., Biltonen R. L., Sando J. J. Activation of protein kinase C by coexisting diacylglycerol-enriched and diacylglycerol-poor lipid domains. Biochemistry. 1997 May 20;36(20):6141–6148. doi: 10.1021/bi962715d. [DOI] [PubMed] [Google Scholar]
- Holopainen J. M., Lehtonen J. Y., Kinnunen P. K. Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem Phys Lipids. 1997 Aug 8;88(1):1–13. doi: 10.1016/s0009-3084(97)00040-6. [DOI] [PubMed] [Google Scholar]
- Huang H. W., Goldberg E. M., Zidovetzki R. Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2. Biochem Biophys Res Commun. 1996 Mar 27;220(3):834–838. doi: 10.1006/bbrc.1996.0490. [DOI] [PubMed] [Google Scholar]
- Huang H. W., Goldberg E. M., Zidovetzki R. Ceramides perturb the structure of phosphatidylcholine bilayers and modulate the activity of phospholipase A2. Eur Biophys J. 1998;27(4):361–366. doi: 10.1007/s002490050143. [DOI] [PubMed] [Google Scholar]
- Hug H., Sarre T. F. Protein kinase C isoenzymes: divergence in signal transduction? Biochem J. 1993 Apr 15;291(Pt 2):329–343. doi: 10.1042/bj2910329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones M. J., Murray A. W. Evidence that ceramide selectively inhibits protein kinase C-alpha translocation and modulates bradykinin activation of phospholipase D. J Biol Chem. 1995 Mar 10;270(10):5007–5013. doi: 10.1074/jbc.270.10.5007. [DOI] [PubMed] [Google Scholar]
- Khan W. A., Mascarella S. W., Lewin A. H., Wyrick C. D., Carroll F. I., Hannun Y. A. Use of D-erythro-sphingosine as a pharmacological inhibitor of protein kinase C in human platelets. Biochem J. 1991 Sep 1;278(Pt 2):387–392. doi: 10.1042/bj2780387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim M. Y., Linardic C., Obeid L., Hannun Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem. 1991 Jan 5;266(1):484–489. [PubMed] [Google Scholar]
- Kolch W., Heidecker G., Kochs G., Hummel R., Vahidi H., Mischak H., Finkenzeller G., Marmé D., Rapp U. R. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature. 1993 Jul 15;364(6434):249–252. doi: 10.1038/364249a0. [DOI] [PubMed] [Google Scholar]
- Kolesnick R. N., Hemer M. R. Characterization of a ceramide kinase activity from human leukemia (HL-60) cells. Separation from diacylglycerol kinase activity. J Biol Chem. 1990 Nov 5;265(31):18803–18808. [PubMed] [Google Scholar]
- Kolesnick R., Golde D. W. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell. 1994 May 6;77(3):325–328. doi: 10.1016/0092-8674(94)90147-3. [DOI] [PubMed] [Google Scholar]
- Lavin M. F., Watters D., Song Q. Role of protein kinase activity in apoptosis. Experientia. 1996 Oct 31;52(10-11):979–994. doi: 10.1007/BF01920107. [DOI] [PubMed] [Google Scholar]
- Lee J. Y., Hannun Y. A., Obeid L. M. Ceramide inactivates cellular protein kinase Calpha. J Biol Chem. 1996 May 31;271(22):13169–13174. doi: 10.1074/jbc.271.22.13169. [DOI] [PubMed] [Google Scholar]
- Lester D. S., Baumann D. Action of organic solvents on protein kinase C. Eur J Pharmacol. 1991 Apr 25;206(4):301–308. doi: 10.1016/0922-4106(91)90114-w. [DOI] [PubMed] [Google Scholar]
- Lester D. S. In vitro linoleic acid activation of protein kinase C. Biochim Biophys Acta. 1990 Sep 24;1054(3):297–303. doi: 10.1016/0167-4889(90)90100-r. [DOI] [PubMed] [Google Scholar]
- Lozano J., Berra E., Municio M. M., Diaz-Meco M. T., Dominguez I., Sanz L., Moscat J. Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J Biol Chem. 1994 Jul 29;269(30):19200–19202. [PubMed] [Google Scholar]
- Lucas M., Sánchez-Margalet V. Protein kinase C involvement in apoptosis. Gen Pharmacol. 1995 Sep;26(5):881–887. doi: 10.1016/0306-3623(94)00295-x. [DOI] [PubMed] [Google Scholar]
- López-García F., Villalaín J., Gómez-Fernández J. C., Quinn P. J. The phase behavior of mixed aqueous dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol. Biophys J. 1994 Jun;66(6):1991–2004. doi: 10.1016/S0006-3495(94)80992-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathias S., Dressler K. A., Kolesnick R. N. Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10009–10013. doi: 10.1073/pnas.88.22.10009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathias S., Younes A., Kan C. C., Orlow I., Joseph C., Kolesnick R. N. Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta. Science. 1993 Jan 22;259(5094):519–522. doi: 10.1126/science.8424175. [DOI] [PubMed] [Google Scholar]
- Mayer L. D., Hope M. J., Cullis P. R., Janoff A. S. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim Biophys Acta. 1985 Jul 11;817(1):193–196. doi: 10.1016/0005-2736(85)90084-7. [DOI] [PubMed] [Google Scholar]
- McConkey D. J., Hartzell P., Jondal M., Orrenius S. Inhibition of DNA fragmentation in thymocytes and isolated thymocyte nuclei by agents that stimulate protein kinase C. J Biol Chem. 1989 Aug 15;264(23):13399–13402. [PubMed] [Google Scholar]
- Morrow M. R., Davis J. H. Differential scanning calorimetry and 2H NMR studies of the phase behavior of gramicidin-phosphatidylcholine mixtures. Biochemistry. 1988 Mar 22;27(6):2024–2032. doi: 10.1021/bi00406a032. [DOI] [PubMed] [Google Scholar]
- Murray N. R., Baumgardner G. P., Burns D. J., Fields A. P. Protein kinase C isotypes in human erythroleukemia (K562) cell proliferation and differentiation. Evidence that beta II protein kinase C is required for proliferation. J Biol Chem. 1993 Jul 25;268(21):15847–15853. [PubMed] [Google Scholar]
- Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
- Obeid L. M., Hannun Y. A. Ceramide: a stress signal and mediator of growth suppression and apoptosis. J Cell Biochem. 1995 Jun;58(2):191–198. doi: 10.1002/jcb.240580208. [DOI] [PubMed] [Google Scholar]
- Olivera A., Buckley N. E., Spiegel S. Sphingomyelinase and cell-permeable ceramide analogs stimulate cellular proliferation in quiescent Swiss 3T3 fibroblasts. J Biol Chem. 1992 Dec 25;267(36):26121–26127. [PubMed] [Google Scholar]
- Portis A., Newton C., Pangborn W., Papahadjopoulos D. Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin. Biochemistry. 1979 Mar 6;18(5):780–790. doi: 10.1021/bi00572a007. [DOI] [PubMed] [Google Scholar]
- Quinn P. J., Takahashi H., Hatta I. Characterization of complexes formed in fully hydrated dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol. Biophys J. 1995 Apr;68(4):1374–1382. doi: 10.1016/S0006-3495(95)80310-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riboni L., Prinetti A., Bassi R., Caminiti A., Tettamanti G. A mediator role of ceramide in the regulation of neuroblastoma Neuro2a cell differentiation. J Biol Chem. 1995 Nov 10;270(45):26868–26875. doi: 10.1074/jbc.270.45.26868. [DOI] [PubMed] [Google Scholar]
- Rietveld A. G., Chupin V. V., Koorengevel M. C., Wienk H. L., Dowhan W., de Kruijff B. Regulation of lipid polymorphism is essential for the viability of phosphatidylethanolamine-deficient Escherichia coli cells. J Biol Chem. 1994 Nov 18;269(46):28670–28675. [PubMed] [Google Scholar]
- Rilfors L., Hauksson J. B., Lindblom G. Regulation and phase equilibria of membrane lipids from Bacillus megaterium and Acholeplasma laidlawii strain A containing methyl-branched acyl chains. Biochemistry. 1994 May 24;33(20):6110–6120. doi: 10.1021/bi00186a010. [DOI] [PubMed] [Google Scholar]
- Ruiz-Argüello M. B., Basáez G., Goñi F. M., Alonso A. Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J Biol Chem. 1996 Oct 25;271(43):26616–26621. doi: 10.1074/jbc.271.43.26616. [DOI] [PubMed] [Google Scholar]
- Sando J. J., Chertihin O. I. Activation of protein kinase C by lysophosphatidic acid: dependence on composition of phospholipid vesicles. Biochem J. 1996 Jul 15;317(Pt 2):583–588. doi: 10.1042/bj3170583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sando J. J., Maurer M. C., Bolen E. J., Grisham C. M. Role of cofactors in protein kinase C activation. Cell Signal. 1992 Nov;4(6):595–609. doi: 10.1016/0898-6568(92)90041-6. [DOI] [PubMed] [Google Scholar]
- Sasaki T., Hazeki K., Hazeki O., Ui M., Katada T. Permissive effect of ceramide on growth factor-induced cell proliferation. Biochem J. 1995 Nov 1;311(Pt 3):829–834. doi: 10.1042/bj3110829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawai H., Okazaki T., Takeda Y., Tashima M., Sawada H., Okuma M., Kishi S., Umehara H., Domae N. Ceramide-induced translocation of protein kinase C-delta and -epsilon to the cytosol. Implications in apoptosis. J Biol Chem. 1997 Jan 24;272(4):2452–2458. doi: 10.1074/jbc.272.4.2452. [DOI] [PubMed] [Google Scholar]
- Sawai H., Okazaki T., Yamamoto H., Okano H., Takeda Y., Tashima M., Sawada H., Okuma M., Ishikura H., Umehara H. Requirement of AP-1 for ceramide-induced apoptosis in human leukemia HL-60 cells. J Biol Chem. 1995 Nov 10;270(45):27326–27331. doi: 10.1074/jbc.270.45.27326. [DOI] [PubMed] [Google Scholar]
- Schorn K., Marsh D. Lipid chain dynamics and molecular location of diacylglycerol in hydrated binary mixtures with phosphatidylcholine: spin label ESR studies. Biochemistry. 1996 Mar 26;35(12):3831–3836. doi: 10.1021/bi952688b. [DOI] [PubMed] [Google Scholar]
- Schütze S., Machleidt T., Krönke M. The role of diacylglycerol and ceramide in tumor necrosis factor and interleukin-1 signal transduction. J Leukoc Biol. 1994 Nov;56(5):533–541. doi: 10.1002/jlb.56.5.533. [DOI] [PubMed] [Google Scholar]
- Senisterra G., Epand R. M. Role of membrane defects in the regulation of the activity of protein kinase C. Arch Biochem Biophys. 1993 Jan;300(1):378–383. doi: 10.1006/abbi.1993.1051. [DOI] [PubMed] [Google Scholar]
- Slater S. J., Kelly M. B., Taddeo F. J., Ho C., Rubin E., Stubbs C. D. The modulation of protein kinase C activity by membrane lipid bilayer structure. J Biol Chem. 1994 Feb 18;269(7):4866–4871. [PubMed] [Google Scholar]
- Snoek G. T., Feijen A., Hage W. J., van Rotterdam W., de Laat S. W. The role of hydrophobic interactions in the phospholipid-dependent activation of protein kinase C. Biochem J. 1988 Oct 15;255(2):629–637. [PMC free article] [PubMed] [Google Scholar]
- Stabel S., Parker P. J. Protein kinase C. Pharmacol Ther. 1991;51(1):71–95. doi: 10.1016/0163-7258(91)90042-k. [DOI] [PubMed] [Google Scholar]
- Stubbs C. D., Slater S. J. The effects of non-lamellar forming lipids on membrane protein-lipid interactions. Chem Phys Lipids. 1996 Jul 15;81(2):185–195. doi: 10.1016/0009-3084(96)02581-9. [DOI] [PubMed] [Google Scholar]
- Van Veldhoven P. P., Bell R. M. Effect of harvesting methods, growth conditions and growth phase on diacylglycerol levels in cultured human adherent cells. Biochim Biophys Acta. 1988 Mar 25;959(2):185–196. doi: 10.1016/0005-2760(88)90030-6. [DOI] [PubMed] [Google Scholar]
- Veiga M. P., Arrondo J. L., Goñi F. M., Alonso A. Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys J. 1999 Jan;76(1 Pt 1):342–350. doi: 10.1016/S0006-3495(99)77201-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venable M. E., Bielawska A., Obeid L. M. Ceramide inhibits phospholipase D in a cell-free system. J Biol Chem. 1996 Oct 4;271(40):24800–24805. doi: 10.1074/jbc.271.40.24800. [DOI] [PubMed] [Google Scholar]
- Westman J., Boulanger Y., Ehrenberg A., Smith I. C. Charge and pH dependent drug binding to model membranes. A 2H-NMR and light absorption study. Biochim Biophys Acta. 1982 Mar 8;685(3):315–328. doi: 10.1016/0005-2736(82)90073-6. [DOI] [PubMed] [Google Scholar]
- Whatley R. E., Stroud E. D., Bunting M., Zimmerman G. A., McIntyre T. M., Prescott S. M. Growth-dependent changes in arachidonic acid release from endothelial cells are mediated by protein kinase C and changes in diacylglycerol. J Biol Chem. 1993 Aug 5;268(22):16130–16138. [PubMed] [Google Scholar]
- William F., Wagner F., Karin M., Kraft A. S. Multiple doses of diacylglycerol and calcium ionophore are necessary to activate AP-1 enhancer activity and induce markers of macrophage differentiation. J Biol Chem. 1990 Oct 25;265(30):18166–18171. [PubMed] [Google Scholar]
- Wolff R. A., Dobrowsky R. T., Bielawska A., Obeid L. M., Hannun Y. A. Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem. 1994 Jul 29;269(30):19605–19609. [PubMed] [Google Scholar]
- Wolfman A., Macara I. G. Elevated levels of diacylglycerol and decreased phorbol ester sensitivity in ras-transformed fibroblasts. Nature. 1987 Jan 22;325(6102):359–361. doi: 10.1038/325359a0. [DOI] [PubMed] [Google Scholar]
- Yao B., Zhang Y., Delikat S., Mathias S., Basu S., Kolesnick R. Phosphorylation of Raf by ceramide-activated protein kinase. Nature. 1995 Nov 16;378(6554):307–310. doi: 10.1038/378307a0. [DOI] [PubMed] [Google Scholar]
- Zidovetzki R., Lester D. S. The mechanism of activation of protein kinase C: a biophysical perspective. Biochim Biophys Acta. 1992 Apr 7;1134(3):261–272. doi: 10.1016/0167-4889(92)90185-e. [DOI] [PubMed] [Google Scholar]
- Zidovetzki R., Sherman I. W., Cardenas M., Borchardt D. B. Chloroquine stabilization of phospholipid membranes against diacylglycerol-induced perturbation. Biochem Pharmacol. 1993 Jan 7;45(1):183–189. doi: 10.1016/0006-2952(93)90391-9. [DOI] [PubMed] [Google Scholar]
- Zou Y., Komuro I., Yamazaki T., Aikawa R., Kudoh S., Shiojima I., Hiroi Y., Mizuno T., Yazaki Y. Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes. J Biol Chem. 1996 Dec 27;271(52):33592–33597. doi: 10.1074/jbc.271.52.33592. [DOI] [PubMed] [Google Scholar]
