Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1498–1506. doi: 10.1016/S0006-3495(99)76997-3

Comparison of the biophysical properties of racemic and d-erythro-N-acyl sphingomyelins.

B Ramstedt 1, J P Slotte 1
PMCID: PMC1300437  PMID: 10465760

Abstract

In this study stereochemically pure d-erythro-sphingomyelins (SMs) with either 16:0 or 18:1(cisDelta9) as the N-linked acyl-chain were synthesized. Our purpose was to examine the properties of these sphingomyelins and acyl-chain matched racemic (d-erythro/l-threo) sphingomyelins in model membranes. Liquid-expanded d-erythro-N-16:0-SM in monolayers was observed to pack more densely than the corresponding racemic sphingomyelin. Cholesterol desorption to beta-cyclodextrin was significantly slower from d-erythro-N-16:0-SM monolayers than from racemic N-16:0-SM monolayers. Significantly more condensed domains were seen in cholesterol/d-erythro-N-16:0-SM monolayers than in the corresponding racemic mixed monolayers, when [7-nitrobenz-2-oxa-1, 3-diazol-4-yl]phosphatidylcholine was used as a probe in monolayer fluorescence microscopy. With monolayers of N-18:1-SMs, both the lateral packing densities (sphingomyelin monolayers) and the rates of cholesterol desorption (mixed cholesterol/sphingomyelin monolayers) was found to be similar for d-erythro and racemic sphingomyelins. The phase transition temperature and enthalpy of d-erythro-N-16:0-SM in bilayer membranes were slightly higher compared with the corresponding racemic sphingomyelin (41.1 degrees C and 8.4 +/- 0.4 kJ/mol, and 39.9 degrees C and 7.2 +/- 0.2 kJ/mol, respectively). Finally, d-erythro-sphingomyelins in monolayers (both N-16:0 and N-18:1 species) were not as easily degraded at 37 degrees C by sphingomyelinase (Staphylococcus aureus) as the corresponding racemic sphingomyelins. We conclude that racemic sphingomyelins differ significantly in their biophysical properties from the physiologically relevant d-erythro sphingomyelins.

Full Text

The Full Text of this article is available as a PDF (347.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar L. K., Barenholz Y., Thompson T. E. Effect of sphingomyelin composition on the phase structure of phosphatidylcholine-sphingomyelin bilayers. Biochemistry. 1997 Mar 4;36(9):2507–2516. doi: 10.1021/bi9625004. [DOI] [PubMed] [Google Scholar]
  2. Barenholz Y., Thompson T. E. Sphingomyelins in bilayers and biological membranes. Biochim Biophys Acta. 1980 Sep 30;604(2):129–158. doi: 10.1016/0005-2736(80)90572-6. [DOI] [PubMed] [Google Scholar]
  3. Bittman R., Kasireddy C. R., Mattjus P., Slotte J. P. Interaction of cholesterol with sphingomyelin in monolayers and vesicles. Biochemistry. 1994 Oct 4;33(39):11776–11781. doi: 10.1021/bi00205a013. [DOI] [PubMed] [Google Scholar]
  4. Boggs J. M. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta. 1987 Oct 5;906(3):353–404. doi: 10.1016/0304-4157(87)90017-7. [DOI] [PubMed] [Google Scholar]
  5. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  6. Brown R. E. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci. 1998 Jan;111(Pt 1):1–9. doi: 10.1242/jcs.111.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bruzik K. S. Conformation of the polar headgroup of sphingomyelin and its analogues. Biochim Biophys Acta. 1988 Apr 7;939(2):315–326. doi: 10.1016/0005-2736(88)90076-4. [DOI] [PubMed] [Google Scholar]
  8. Bruzik K. S., Tsai M. D. A calorimetric study of the thermotropic behavior of pure sphingomyelin diastereomers. Biochemistry. 1987 Aug 25;26(17):5364–5368. doi: 10.1021/bi00391a022. [DOI] [PubMed] [Google Scholar]
  9. Cohen R., Barenholz Y. Correlation between the thermotropic behavior of sphingomyelin liposomes and sphingomyelin hydrolysis by sphingomyelinase of Staphylococcus aureus. Biochim Biophys Acta. 1978 May 4;509(1):181–187. doi: 10.1016/0005-2736(78)90018-4. [DOI] [PubMed] [Google Scholar]
  10. Cohen R., Barenholz Y., Gatt S., Dagan A. Preparation and characterization of well defined D-erythro sphingomyelins. Chem Phys Lipids. 1984 Oct;35(4):371–384. doi: 10.1016/0009-3084(84)90079-3. [DOI] [PubMed] [Google Scholar]
  11. GAVER R. C., SWEELEY C. C. METHODS FOR METHANOLYSIS OF SPHINGOLIPIDS AND DIRECT DETERMINATION OF LONG-CHAIN BASES BY GAS CHROMATOGRAPHY. J Am Oil Chem Soc. 1965 Apr;42:294–298. doi: 10.1007/BF02540132. [DOI] [PubMed] [Google Scholar]
  12. Grönberg L., Ruan Z. S., Bittman R., Slotte J. P. Interaction of cholesterol with synthetic sphingomyelin derivatives in mixed monolayers. Biochemistry. 1991 Nov 5;30(44):10746–10754. doi: 10.1021/bi00108a020. [DOI] [PubMed] [Google Scholar]
  13. Harder T., Simons K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol. 1997 Aug;9(4):534–542. doi: 10.1016/s0955-0674(97)80030-0. [DOI] [PubMed] [Google Scholar]
  14. Jungner M., Ohvo H., Slotte J. P. Interfacial regulation of bacterial sphingomyelinase activity. Biochim Biophys Acta. 1997 Feb 18;1344(3):230–240. doi: 10.1016/s0005-2760(96)00147-6. [DOI] [PubMed] [Google Scholar]
  15. Kaluzny M. A., Duncan L. A., Merritt M. V., Epps D. E. Rapid separation of lipid classes in high yield and purity using bonded phase columns. J Lipid Res. 1985 Jan;26(1):135–140. [PubMed] [Google Scholar]
  16. Kan C. C., Ruan Z. S., Bittman R. Interaction of cholesterol with sphingomyelin in bilayer membranes: evidence that the hydroxy group of sphingomyelin does not modulate the rate of cholesterol exchange between vesicles. Biochemistry. 1991 Aug 6;30(31):7759–7766. doi: 10.1021/bi00245a013. [DOI] [PubMed] [Google Scholar]
  17. Lange Y., Ramos B. V. Analysis of the distribution of cholesterol in the intact cell. J Biol Chem. 1983 Dec 25;258(24):15130–15134. [PubMed] [Google Scholar]
  18. Lange Y., Swaisgood M. H., Ramos B. V., Steck T. L. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J Biol Chem. 1989 Mar 5;264(7):3786–3793. [PubMed] [Google Scholar]
  19. Maulik P. R., Shipley G. G. N-palmitoyl sphingomyelin bilayers: structure and interactions with cholesterol and dipalmitoylphosphatidylcholine. Biochemistry. 1996 Jun 18;35(24):8025–8034. doi: 10.1021/bi9528356. [DOI] [PubMed] [Google Scholar]
  20. Maulik P. R., Sripada P. K., Shipley G. G. Structure and thermotropic properties of hydrated N-stearoyl sphingomyelin bilayer membranes. Biochim Biophys Acta. 1991 Feb 25;1062(2):211–219. doi: 10.1016/0005-2736(91)90395-o. [DOI] [PubMed] [Google Scholar]
  21. Moesby L., Corver J., Erukulla R. K., Bittman R., Wilschut J. Sphingolipids activate membrane fusion of Semliki Forest virus in a stereospecific manner. Biochemistry. 1995 Aug 22;34(33):10319–10324. doi: 10.1021/bi00033a001. [DOI] [PubMed] [Google Scholar]
  22. Morrison W. R., Hay J. D. Polar lipids in bovine milk. II. Long-chain bases, normal and 2-hydroxy fatty acids, and isomeric cis and trans monoenoic fatty acids in the sphingolipids. Biochim Biophys Acta. 1970 May 5;202(3):460–467. doi: 10.1016/0005-2760(70)90116-5. [DOI] [PubMed] [Google Scholar]
  23. Nag K., Keough K. M. Epifluorescence microscopic studies of monolayers containing mixtures of dioleoyl- and dipalmitoylphosphatidylcholines. Biophys J. 1993 Sep;65(3):1019–1026. doi: 10.1016/S0006-3495(93)81155-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ohvo H., Olsio C., Slotte J. P. Effects of sphingomyelin and phosphatidylcholine degradation on cyclodextrin-mediated cholesterol efflux in cultured fibroblasts. Biochim Biophys Acta. 1997 Nov 15;1349(2):131–141. doi: 10.1016/s0005-2760(97)00126-4. [DOI] [PubMed] [Google Scholar]
  25. Ohvo H., Slotte J. P. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Biochemistry. 1996 Jun 18;35(24):8018–8024. doi: 10.1021/bi9528816. [DOI] [PubMed] [Google Scholar]
  26. Phillips M. C., Johnson W. J., Rothblat G. H. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta. 1987 Jun 24;906(2):223–276. doi: 10.1016/0304-4157(87)90013-x. [DOI] [PubMed] [Google Scholar]
  27. Prendergast F. G., Haugland R. P., Callahan P. J. 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry. 1981 Dec 22;20(26):7333–7338. doi: 10.1021/bi00529a002. [DOI] [PubMed] [Google Scholar]
  28. Pörn M. I., Ares M. P., Slotte J. P. Degradation of plasma membrane phosphatidylcholine appears not to affect the cellular cholesterol distribution. J Lipid Res. 1993 Aug;34(8):1385–1392. [PubMed] [Google Scholar]
  29. Ramstedt B., Slotte J. P. Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length. Biophys J. 1999 Feb;76(2):908–915. doi: 10.1016/S0006-3495(99)77254-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schroeder F., Frolov A. A., Murphy E. J., Atshaves B. P., Jefferson J. R., Pu L., Wood W. G., Foxworth W. B., Kier A. B. Recent advances in membrane cholesterol domain dynamics and intracellular cholesterol trafficking. Proc Soc Exp Biol Med. 1996 Nov;213(2):150–177. doi: 10.3181/00379727-213-44047. [DOI] [PubMed] [Google Scholar]
  31. Seul M, Sammon MJ. Competing interactions and domain-shape instabilities in a monomolecular film at an air-water interface. Phys Rev Lett. 1990 Apr 16;64(16):1903–1906. doi: 10.1103/PhysRevLett.64.1903. [DOI] [PubMed] [Google Scholar]
  32. Shinitzky M., Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta. 1978 Dec 15;515(4):367–394. doi: 10.1016/0304-4157(78)90010-2. [DOI] [PubMed] [Google Scholar]
  33. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  34. Skipski V. P., Peterson R. F., Barclay M. Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J. 1964 Feb;90(2):374–378. doi: 10.1042/bj0900374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Slotte J. P. Lateral domain formation in mixed monolayers containing cholesterol and dipalmitoylphosphatidylcholine or N-palmitoylsphingomyelin. Biochim Biophys Acta. 1995 May 4;1235(2):419–427. doi: 10.1016/0005-2736(95)80031-a. [DOI] [PubMed] [Google Scholar]
  36. Slotte J. P., Mattjus P. Visualization of lateral phases in cholesterol and phosphatidylcholine monolayers at the air/water interface--a comparative study with two different reporter molecules. Biochim Biophys Acta. 1995 Jan 3;1254(1):22–29. doi: 10.1016/0005-2760(94)00159-v. [DOI] [PubMed] [Google Scholar]
  37. Smaby J. M., Kulkarni V. S., Momsen M., Brown R. E. The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines. Biophys J. 1996 Feb;70(2):868–877. doi: 10.1016/S0006-3495(96)79629-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sripada P. K., Maulik P. R., Hamilton J. A., Shipley G. G. Partial synthesis and properties of a series of N-acyl sphingomyelins. J Lipid Res. 1987 Jun;28(6):710–718. [PubMed] [Google Scholar]
  39. Verger R., De Haas G. H. Enzyme reactions in a membrane model. 1. A new technique to study enzyme reactions in monolayers. Chem Phys Lipids. 1973 Feb;10(2):127–136. doi: 10.1016/0009-3084(73)90009-1. [DOI] [PubMed] [Google Scholar]
  40. Wilson E., Wang E., Mullins R. E., Uhlinger D. J., Liotta D. C., Lambeth J. D., Merrill A. H., Jr Modulation of the free sphingosine levels in human neutrophils by phorbol esters and other factors. J Biol Chem. 1988 Jul 5;263(19):9304–9309. [PubMed] [Google Scholar]
  41. Yedgar S., Cohen R., Gatt S., Barenholz Y. Hydrolysis of monomolecular layers of synthetic sphingomyelins by sphingomyelinase of Staphylococcus aureus. Biochem J. 1982 Mar 1;201(3):597–603. doi: 10.1042/bj2010597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. von Tscharner V., McConnell H. M. An alternative view of phospholipid phase behavior at the air-water interface. Microscope and film balance studies. Biophys J. 1981 Nov;36(2):409–419. doi: 10.1016/S0006-3495(81)84740-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES