Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1507–1517. doi: 10.1016/S0006-3495(99)76998-5

Condensed complexes of cholesterol and phospholipids.

A Radhakrishnan 1, H M McConnell 1
PMCID: PMC1300438  PMID: 10465761

Abstract

Mixtures of dihydrocholesterol and phospholipids form immiscible liquids in monolayer membranes at the air-water interface under specified conditions of temperature and 2-dimensional pressure. In recent work it has been discovered that a number of these mixtures exhibit two upper miscibility critical points. Pairs of upper critical points can be accounted for by a theoretical model that implies the cooperative formation of molecular complexes of dihydrocholesterol and phospholipid molecules. These complexes are calculated to be present in the membranes both above and below the critical points. Below the critical points the complexes form a separate phase, whereas above the critical points the complexes are completely miscible with the other lipid components. The cooperativity of complex formation prompts the use of the terminology condensed complex.

Full Text

The Full Text of this article is available as a PDF (443.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berclaz T., McConnell H. M. Phase Equilibria in binary mixtures of dimyristoylphosphatidylcholine and cardiolipin. Biochemistry. 1981 Nov 10;20(23):6635–6640. doi: 10.1021/bi00526a018. [DOI] [PubMed] [Google Scholar]
  2. Bohuslav J., Cinek T., Horejsí V. Large, detergent-resistant complexes containing murine antigens Thy-1 and Ly-6 and protein tyrosine kinase p56lck. Eur J Immunol. 1993 Apr;23(4):825–831. doi: 10.1002/eji.1830230409. [DOI] [PubMed] [Google Scholar]
  3. Brown D. A., London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. [DOI] [PubMed] [Google Scholar]
  4. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  5. Cinek T., Horejsí V. The nature of large noncovalent complexes containing glycosyl-phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. J Immunol. 1992 Oct 1;149(7):2262–2270. [PubMed] [Google Scholar]
  6. Engelman D. M., Rothman J. E. The planar organization of lecithin-cholesterol bilayers. J Biol Chem. 1972 Jun 10;247(11):3694–3697. [PubMed] [Google Scholar]
  7. Gershfeld N. L. Equilibrium studies of lecithin-cholesterol interactions I. Stoichiometry of lecithin-cholesterol complexes in bulk systems. Biophys J. 1978 Jun;22(3):469–488. doi: 10.1016/S0006-3495(78)85500-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hagen J. P., McConnell H. M. Critical pressures in multicomponent lipid monolayers. Biochim Biophys Acta. 1996 Apr 26;1280(2):169–172. doi: 10.1016/0005-2736(96)00009-0. [DOI] [PubMed] [Google Scholar]
  9. Hagen J. P., McConnell H. M. Liquid-liquid immiscibility in lipid monolayers. Biochim Biophys Acta. 1997 Oct 2;1329(1):7–11. doi: 10.1016/s0005-2736(97)00135-1. [DOI] [PubMed] [Google Scholar]
  10. Hanada K., Nishijima M., Akamatsu Y., Pagano R. E. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J Biol Chem. 1995 Mar 17;270(11):6254–6260. doi: 10.1074/jbc.270.11.6254. [DOI] [PubMed] [Google Scholar]
  11. Huang J., Feigenson G. W. A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J. 1999 Apr;76(4):2142–2157. doi: 10.1016/S0006-3495(99)77369-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ipsen J. H., Karlström G., Mouritsen O. G., Wennerström H., Zuckermann M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 1987 Nov 27;905(1):162–172. doi: 10.1016/0005-2736(87)90020-4. [DOI] [PubMed] [Google Scholar]
  13. Lee K. Y., Klingler J. F., McConnell H. M. Electric field-induced concentration gradients in lipid monolayers. Science. 1994 Feb 4;263(5147):655–658. doi: 10.1126/science.8303272. [DOI] [PubMed] [Google Scholar]
  14. Liu F., Chong P. L. Evidence for a regulatory role of cholesterol superlattices in the hydrolytic activity of secretory phospholipase A2 in lipid membranes. Biochemistry. 1999 Mar 30;38(13):3867–3873. doi: 10.1021/bi982693q. [DOI] [PubMed] [Google Scholar]
  15. Parasassi T., Giusti A. M., Raimondi M., Gratton E. Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations. Biophys J. 1995 May;68(5):1895–1902. doi: 10.1016/S0006-3495(95)80367-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Presti F. T., Pace R. J., Chan S. I. Cholesterol-phospholipid interaction in membranes. 2. Stoichiometry and molecular packing of cholesterol-rich domains. Biochemistry. 1982 Aug 3;21(16):3831–3835. doi: 10.1021/bi00259a017. [DOI] [PubMed] [Google Scholar]
  17. Sheets E. D., Holowka D., Baird B. Membrane organization in immunoglobulin E receptor signaling. Curr Opin Chem Biol. 1999 Feb;3(1):95–99. doi: 10.1016/s1367-5931(99)80017-9. [DOI] [PubMed] [Google Scholar]
  18. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  19. Somerharju P. J., Virtanen J. A., Eklund K. K., Vainio P., Kinnunen P. K. 1-Palmitoyl-2-pyrenedecanoyl glycerophospholipids as membrane probes: evidence for regular distribution in liquid-crystalline phosphatidylcholine bilayers. Biochemistry. 1985 May 21;24(11):2773–2781. doi: 10.1021/bi00332a027. [DOI] [PubMed] [Google Scholar]
  20. Tang D., Wieb van der Meer B., Chen S. Y. Evidence for a regular distribution of cholesterol in phospholipid bilayers from diphenylhexatriene fluorescence. Biophys J. 1995 May;68(5):1944–1951. doi: 10.1016/S0006-3495(95)80371-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Viola A., Schroeder S., Sakakibara Y., Lanzavecchia A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science. 1999 Jan 29;283(5402):680–682. doi: 10.1126/science.283.5402.680. [DOI] [PubMed] [Google Scholar]
  22. Virtanen J. A., Ruonala M., Vauhkonen M., Somerharju P. Lateral organization of liquid-crystalline cholesterol-dimyristoylphosphatidylcholine bilayers. Evidence for domains with hexagonal and centered rectangular cholesterol superlattices. Biochemistry. 1995 Sep 12;34(36):11568–11581. doi: 10.1021/bi00036a033. [DOI] [PubMed] [Google Scholar]
  23. Wang M. M., Sugar I. P., Chong P. L. Role of the sterol superlattice in the partitioning of the antifungal drug nystatin into lipid membranes. Biochemistry. 1998 Aug 25;37(34):11797–11805. doi: 10.1021/bi980290k. [DOI] [PubMed] [Google Scholar]
  24. Xavier R., Brennan T., Li Q., McCormack C., Seed B. Membrane compartmentation is required for efficient T cell activation. Immunity. 1998 Jun;8(6):723–732. doi: 10.1016/s1074-7613(00)80577-4. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES